Metagenome Sequencing Finds Strange Biology in  >15% Bacteria

Metagenome Sequencing Finds Strange Biology in >15% Bacteria


A few days back, we wrote a number of posts (here, here) on the origin of ribosome and genetic code. Those working on the problem got a big surprise from a new metagenome sequencing of bacterial species (h/t: @dangraur). The authors found that the genomes of >15% of Bacteria differed from well-accepted universal conserved features -

CPR organisms often have self-splicing introns and proteins encoded within their rRNA genes, a feature rarely reported in bacteria. Furthermore, they have unusual ribosome compositions. All are missing a ribosomal protein often absent in symbionts, and specific lineages are missing ribosomal proteins and biogenesis factors considered universal in bacteria.

That certainly does not seem like a big break on the origin of genetic code itself, but given the high abundance of the newly discovered organisms (>15%), it is quite possible that our current understanding of the microbial world is based on a tiny subset of what is out there in nature.

-———————————-

Unusual biology across a group comprising more than 15% of domain Bacteria

A prominent feature of the bacterial domain is a radiation of major lineages that are defined as candidate phyla because they lack isolated representatives. Bacteria from these phyla occur in diverse environments and are thought to mediate carbon and hydrogen cycles. Genomic analyses of a few representatives suggested that metabolic limitations have prevented their cultivation. Here we reconstructed 8 complete and 789 draft genomes from bacteria representing >35 phyla and documented features that consistently distinguish these organisms from other bacteria. We infer that this group, which may comprise >15% of the bacterial domain, has shared evolutionary history, and describe it as the candidate phyla radiation (CPR). All CPR genomes are small and most lack numerous biosynthetic pathways. Owing to divergent 16S ribosomal RNA (rRNA) gene sequences, 50100% of organisms sampled from specific phyla would evade detection in typical cultivation-independent surveys. CPR organisms often have self-splicing introns and proteins encoded within their rRNA genes, a feature rarely reported in bacteria. Furthermore, they have unusual ribosome compositions. All are missing a ribosomal protein often absent in symbionts, and specific lineages are missing ribosomal proteins and biogenesis factors considered universal in bacteria. This implies different ribosome structures and biogenesis mechanisms, and underlines unusual biology across a large part of the bacterial domain.



Written by M. //