bioconductor v3.9.0 DOSE

This package implements five methods proposed by

Link to this section Summary

Functions

Disease Ontology Semantic and Enrichment analysis Implemented five methods proposed by Resnik, Schlicker, Jiang, Lin and Wang respectively for measuring DO semantic similarities, and hypergeometric test for enrichment analysis.

Datasets

EXTID2NAME

GSEA_internal

clusterSim

compute information content

doSim

Enrichment analysis based on the DisGeNET ( http://www.disgenet.org/ )

enrichDGN

DO Enrichment Analysis

enrichNCG

Class "enrichResult" This class represents the result of enrichment analysis.

enrich.internal

convert Gene ID to DO Terms

geneID generic

geneInCategory generic

geneSim

DisGeNET Gene Set Enrichment Analysis

DO Gene Set Enrichment Analysis

NCG Gene Set Enrichment Analysis

Class "gseaResult" This class represents the result of GSEA analysis

gsfilter

mclusterSim

parse_ratio

rebuiding annotation data

Objects exported from other packages

setReadable

show method

simplot

summary method

theme_dose

Link to this section Functions

Disease Ontology Semantic and Enrichment analysis Implemented five methods proposed by Resnik, Schlicker, Jiang, Lin and Wang respectively for measuring DO semantic similarities, and hypergeometric test for enrichment analysis.

Description

This package is designed to estimate DO-based semantic similarity measurement and enrichment analysis.

Details

list(list("ll"), list(" Package: ", list(), " DOSE", list(), " Type: ", list(), " Package", list(), " Version: ", list(), " ", "2.3.5", list(), " Date: ", list(), " 2-27-2012", list(), " biocViews:", list(), " Bioinformatics, ", "Annotation", list(), " Depends:", list(), " ", list(), " Imports: ", list(), " methods, AnnotationDbi, ", "DO.db", list(), " Suggests:", list(), " clusterProfiler, GOSemSim", list(), " License: ", list(), " ", "Artistic-2.0", list(), " "))

Seealso

enrichResult

Author

Guangchuang Yu, Li-Gen Wang

Maintainer: Guangchuang Yu guangchuangyu@gmail.com

Datasets

Description

Information content and DO term to entrez gene IDs mapping

EXTID2NAME

Description

mapping gene ID to gene Symbol

Usage

EXTID2NAME(OrgDb, geneID, keytype)

Arguments

ArgumentDescription
OrgDbOrgDb
geneIDentrez gene ID
keytypekeytype

Value

gene symbol

Author

Guangchuang Yu http://guangchuangyu.github.io

Link to this function

GSEA_internal()

GSEA_internal

Description

generic function for gene set enrichment analysis

Usage

GSEA_internal(geneList, exponent, nPerm, minGSSize, maxGSSize,
  pvalueCutoff, pAdjustMethod, verbose, seed = FALSE, USER_DATA,
  by = "fgsea")

Arguments

ArgumentDescription
geneListorder ranked geneList
exponentweight of each step
nPermpermutation numbers
minGSSizeminimal size of each geneSet for analyzing
maxGSSizemaximal size of each geneSet for analyzing
pvalueCutoffp value Cutoff
pAdjustMethodp value adjustment method
verboseprint message or not
seedset seed inside the function to make result reproducible. FALSE by default.
USER_DATAannotation data
byone of 'fgsea' or 'DOSE'

Value

gseaResult object

Author

Yu Guangchuang

clusterSim

Description

semantic similarity between two gene clusters

Usage

clusterSim(cluster1, cluster2, measure = "Wang", combine = "BMA")

Arguments

ArgumentDescription
cluster1a vector of gene IDs
cluster2another vector of gene IDs
measureOne of "Resnik", "Lin", "Rel", "Jiang" and "Wang" methods.
combineOne of "max", "avg", "rcmax", "BMA" methods, for combining

Details

given two gene clusters, this function calculates semantic similarity between them.

Value

similarity

Author

Yu Guangchuang

Examples

cluster1 <- c("835", "5261","241", "994")
cluster2 <- c("307", "308", "317", "321", "506", "540", "378", "388", "396")
clusterSim(cluster1, cluster2)

compute information content

Description

compute information content

Usage

computeIC(ont = "DO", organism = "human")

Arguments

ArgumentDescription
ont"DO"
organism"human"

Author

Guangchuang Yu http://guangchuangyu.github.io

doSim

Description

measuring similarities between two DO term vectors.

Usage

doSim(DOID1, DOID2, measure = "Wang")

Arguments

ArgumentDescription
DOID1DO term vector
DOID2DO term vector
measureone of "Wang", "Resnik", "Rel", "Jiang", and "Lin".

Details

provide two DO term vectors, this function will calculate their similarities.

Value

score matrix

Author

Guangchuang Yu https://guangchuangyu.github.io

Enrichment analysis based on the DisGeNET ( http://www.disgenet.org/ )

Description

given a vector of genes, this function will return the enrichment NCG categories with FDR control

Usage

enrichDGN(gene, pvalueCutoff = 0.05, pAdjustMethod = "BH", universe,
  minGSSize = 10, maxGSSize = 500, qvalueCutoff = 0.2,
  readable = FALSE)

Arguments

ArgumentDescription
genea vector of entrez gene id
pvalueCutoffpvalue cutoff
pAdjustMethodone of "holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none"
universebackground genes
minGSSizeminimal size of genes annotated by NCG category for testing
maxGSSizemaximal size of each geneSet for analyzing
qvalueCutoffqvalue cutoff
readablewhether mapping gene ID to gene Name

Value

A enrichResult instance

Author

Guangchuang Yu

References

Janet et al. (2015) DisGeNET: a discovery platform for the dynamical exploration of human diseases and their genes. Database bav028 http://database.oxfordjournals.org/content/2015/bav028.long

enrichDGN

Description

Enrichment analysis based on the DisGeNET ( http://www.disgenet.org/ )

Usage

enrichDGNv(snp, pvalueCutoff = 0.05, pAdjustMethod = "BH", universe,
  minGSSize = 10, maxGSSize = 500, qvalueCutoff = 0.2,
  readable = FALSE)

Arguments

ArgumentDescription
snpa vector of SNP
pvalueCutoffpvalue cutoff
pAdjustMethodone of "holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none"
universebackground genes
minGSSizeminimal size of genes annotated by NCG category for testing
maxGSSizemaximal size of each geneSet for analyzing
qvalueCutoffqvalue cutoff
readablewhether mapping gene ID to gene Name

Details

given a vector of genes, this function will return the enrichment NCG categories with FDR control

Value

A enrichResult instance

Author

Guangchuang Yu

References

Janet et al. (2015) DisGeNET: a discovery platform for the dynamical exploration of human diseases and their genes. Database bav028 http://database.oxfordjournals.org/content/2015/bav028.long

DO Enrichment Analysis

Description

Given a vector of genes, this function will return the enrichment DO categories with FDR control.

Usage

enrichDO(gene, ont = "DO", pvalueCutoff = 0.05, pAdjustMethod = "BH",
  universe, minGSSize = 10, maxGSSize = 500, qvalueCutoff = 0.2,
  readable = FALSE)

Arguments

ArgumentDescription
genea vector of entrez gene id
ontone of DO or DOLite.
pvalueCutoffpvalue cutoff
pAdjustMethodone of "holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none"
universebackground genes
minGSSizeminimal size of genes annotated by NCG category for testing
maxGSSizemaximal size of each geneSet for analyzing
qvalueCutoffqvalue cutoff
readablewhether mapping gene ID to gene Name

Value

A enrichResult instance.

Seealso

enrichResult-class

Author

Guangchuang Yu http://guangchuangyu.github.io

Examples

data(geneList)
gene = names(geneList)[geneList > 1]
yy = enrichDO(gene, pvalueCutoff=0.05)
summary(yy)

enrichNCG

Description

Enrichment analysis based on the Network of Cancer Genes database (http://ncg.kcl.ac.uk/)

Usage

enrichNCG(gene, pvalueCutoff = 0.05, pAdjustMethod = "BH", universe,
  minGSSize = 10, maxGSSize = 500, qvalueCutoff = 0.2,
  readable = FALSE)

Arguments

ArgumentDescription
genea vector of entrez gene id
pvalueCutoffpvalue cutoff
pAdjustMethodone of "holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none"
universebackground genes
minGSSizeminimal size of genes annotated by NCG category for testing
maxGSSizemaximal size of each geneSet for analyzing
qvalueCutoffqvalue cutoff
readablewhether mapping gene ID to gene Name

Details

given a vector of genes, this function will return the enrichment NCG categories with FDR control

Value

A enrichResult instance

Author

Guangchuang Yu

Link to this function

enrichResult_class()

Class "enrichResult" This class represents the result of enrichment analysis.

Description

Class "enrichResult" This class represents the result of enrichment analysis.

Seealso

enrichDO

Author

Guangchuang Yu https://guangchuangyu.github.io

Link to this function

enricher_internal()

enrich.internal

Description

interal method for enrichment analysis

Usage

enricher_internal(gene, pvalueCutoff, pAdjustMethod = "BH",
  universe = NULL, minGSSize = 10, maxGSSize = 500,
  qvalueCutoff = 0.2, USER_DATA)

Arguments

ArgumentDescription
genea vector of entrez gene id.
pvalueCutoffCutoff value of pvalue.
pAdjustMethodone of "holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none"
universebackground genes
minGSSizeminimal size of genes annotated by Ontology term for testing.
maxGSSizemaximal size of each geneSet for analyzing
qvalueCutoffcutoff of qvalue
USER_DATAontology information

Details

using the hypergeometric model

Value

A enrichResult instance.

Author

Guangchuang Yu http://guangchuangyu.github.io

Link to this function

fortifyenrichResult()

fortify

Description

convert enrichResult object for ggplot2

Usage

list(list("fortify"), list("enrichResult"))(model, data, showCategory = 5,
  by = "Count", order = FALSE, drop = FALSE, split = NULL, ...)

Arguments

ArgumentDescription
modelenrichResult object
datanot use here
showCategoryCategory numbers to show
byone of Count and GeneRatio
orderlogical
droplogical
splitseparate result by 'split' variable
...additional parameter

convert Gene ID to DO Terms

Description

provide gene ID, this function will convert to the corresponding DO Terms

Usage

gene2DO(gene)

Arguments

ArgumentDescription
geneentrez gene ID

Value

DO Terms

Author

Guangchuang Yu http://guangchuangyu.github.io

geneID generic

Description

geneID generic

Usage

geneID(x)

Arguments

ArgumentDescription
xenrichResult object

Value

'geneID' return the 'geneID' column of the enriched result which can be converted to data.frame via 'as.data.frame'

Examples

data(geneList, package="DOSE")
de <- names(geneList)[1:100]
x <- enrichDO(de)
geneID(x)
Link to this function

geneInCategory()

geneInCategory generic

Description

geneInCategory generic

Usage

geneInCategory(x)

Arguments

ArgumentDescription
xenrichResult

Value

'geneInCategory' return a list of genes, by spliting the input gene vector to enriched functional categories

Examples

data(geneList, package="DOSE")
de <- names(geneList)[1:100]
x <- enrichDO(de)
geneInCategory(x)

geneSim

Description

measuring similarities bewteen two gene vectors.

Usage

geneSim(geneID1, geneID2 = NULL, measure = "Wang", combine = "BMA")

Arguments

ArgumentDescription
geneID1entrez gene vector
geneID2entrez gene vector
measureone of "Wang", "Resnik", "Rel", "Jiang", and "Lin".
combineOne of "max", "avg", "rcmax", "BMA" methods, for combining semantic similarity scores of multiple DO terms associated with gene/protein.

Details

provide two entrez gene vectors, this function will calculate their similarity.

Value

score matrix

Author

Guangchuang Yu http://ygc.name

DisGeNET Gene Set Enrichment Analysis

Description

perform gsea analysis

Usage

gseDGN(geneList, exponent = 1, nPerm = 1000, minGSSize = 10,
  maxGSSize = 500, pvalueCutoff = 0.05, pAdjustMethod = "BH",
  verbose = TRUE, seed = FALSE, by = "fgsea")

Arguments

ArgumentDescription
geneListorder ranked geneList
exponentweight of each step
nPermpermutation numbers
minGSSizeminimal size of each geneSet for analyzing
maxGSSizemaximal size of each geneSet for analyzing
pvalueCutoffpvalue Cutoff
pAdjustMethodp value adjustment method
verboseprint message or not
seedlogical
byone of 'fgsea' or 'DOSE'

Value

gseaResult object

Author

Yu Guangchuang

DO Gene Set Enrichment Analysis

Description

perform gsea analysis

Usage

gseDO(geneList, exponent = 1, nPerm = 1000, minGSSize = 10,
  maxGSSize = 500, pvalueCutoff = 0.05, pAdjustMethod = "BH",
  verbose = TRUE, seed = FALSE, by = "fgsea")

Arguments

ArgumentDescription
geneListorder ranked geneList
exponentweight of each step
nPermpermutation numbers
minGSSizeminimal size of each geneSet for analyzing
maxGSSizemaximal size of each geneSet for analyzing
pvalueCutoffpvalue Cutoff
pAdjustMethodp value adjustment method
verboseprint message or not
seedlogical
byone of 'fgsea' or 'DOSE'

Value

gseaResult object

Author

Yu Guangchuang

NCG Gene Set Enrichment Analysis

Description

perform gsea analysis

Usage

gseNCG(geneList, exponent = 1, nPerm = 1000, minGSSize = 10,
  maxGSSize = 500, pvalueCutoff = 0.05, pAdjustMethod = "BH",
  verbose = TRUE, seed = FALSE, by = "fgsea")

Arguments

ArgumentDescription
geneListorder ranked geneList
exponentweight of each step
nPermpermutation numbers
minGSSizeminimal size of each geneSet for analyzing
maxGSSizemaximal size of each geneSet for analyzing
pvalueCutoffpvalue Cutoff
pAdjustMethodp value adjustment method
verboseprint message or not
seedlogical
byone of 'fgsea' or 'DOSE'

Value

gseaResult object

Author

Yu Guangchuang

Link to this function

gseaResult_class()

Class "gseaResult" This class represents the result of GSEA analysis

Description

Class "gseaResult" This class represents the result of GSEA analysis

Author

Guangchuang Yu https://guangchuangyu.github.io

gsfilter

Description

filter enriched result by gene set size or gene count

Usage

gsfilter(x, by = "GSSize", min = NA, max = NA)

Arguments

ArgumentDescription
xinstance of enrichResult or compareClusterResult
byone of 'GSSize' or 'Count'
minminimal size
maxmaximal size

Value

update object

Author

Guangchuang Yu

mclusterSim

Description

Pairwise semantic similarity for a list of gene clusters

Usage

mclusterSim(clusters, measure = "Wang", combine = "BMA")

Arguments

ArgumentDescription
clustersA list of gene clusters
measureone of "Wang", "Resnik", "Rel", "Jiang", and "Lin".
combineOne of "max", "avg", "rcmax", "BMA" methods, for combining semantic similarity scores of multiple DO terms associated with gene/protein.

Value

similarity matrix

Author

Yu Guangchuang

Examples

cluster1 <- c("835", "5261","241")
cluster2 <- c("578","582")
cluster3 <- c("307", "308", "317")
clusters <- list(a=cluster1, b=cluster2, c=cluster3)
mclusterSim(clusters, measure="Wang")

parse_ratio

Description

parse character ratio to double value, such as 1/5 to 0.2

Usage

parse_ratio(ratio)

Arguments

ArgumentDescription
ratiocharacter vector of ratio to parse

Value

A numeric vector (double) of parsed ratio

Author

Guangchuang Yu

Link to this function

rebuildAnnoData()

rebuiding annotation data

Description

rebuilding entrez and DO mapping datasets

Usage

rebuildAnnoData(file)

Arguments

ArgumentDescription
filedo_rif.human.txt

Author

Guangchuang Yu http://guangchuangyu.github.io

Objects exported from other packages

Description

These objects are imported from other packages. Follow the links below to see their documentation.

list(" ", " ", list(list("ggplot2"), list(list(list("facet_grid")))), " ")

setReadable

Description

mapping geneID to gene Symbol

Usage

setReadable(x, OrgDb, keyType = "auto")

Arguments

ArgumentDescription
xenrichResult Object
OrgDbOrgDb
keyTypekeyType of gene

Value

enrichResult Object

Author

Yu Guangchuang

show method

Description

show method for gseaResult instance

show method for enrichResult instance

Usage

show(object)
show(object)

Arguments

ArgumentDescription
objectA enrichResult instance.

Value

message

message

Author

Guangchuang Yu https://guangchuangyu.github.io

Guangchuang Yu https://guangchuangyu.github.io

simplot

Description

plotting similarity matrix

Usage

simplot(sim, xlab = "", ylab = "", color.low = "white",
  color.high = "red", labs = TRUE, digits = 2, labs.size = 3,
  font.size = 14)

Arguments

ArgumentDescription
simsimilarity matrix
xlabxlab
ylabylab
color.lowcolor of low value
color.highcolor of high value
labslogical, add text label or not
digitsround digit numbers
labs.sizelable size
font.sizefont size

Value

ggplot object

Author

Yu Guangchuang

Link to this function

summary_methods()

summary method

Description

summary method for gseaResult instance

summary method for enrichResult instance

Usage

summary(object, ...)
summary(object, ...)

Arguments

ArgumentDescription
objectA enrichResult instance.
...additional parameter

Value

A data frame

A data frame

Author

Guangchuang Yu https://guangchuangyu.github.io

Guangchuang Yu http://guangchuangyu.github.io

theme_dose

Description

ggplot theme of DOSE

Usage

theme_dose(font.size = 14)

Arguments

ArgumentDescription
font.sizefont size

Value

ggplot theme

Examples

library(ggplot2)
qplot(1:10) + theme_dose()