bioconductor v3.9.0 GOSemSim
The semantic comparisons of Gene Ontology (GO) annotations provide
Link to this section Summary
Functions
Class "GOSemSimDATA" This class stores IC and gene to go mapping for semantic similarity measurement
Gene Ontology-based Sematic Similarity Measures
Semantic Similarity Between Two Gene Clusters
combining similarity matrix to similarity score
Semantic Similarity Between two Genes
Semantic Similarity Between Two GO Terms
Information content of GO terms
godata
information content based methods
load_OrgDb
Pairwise Semantic Similarities for a List of Gene Clusters
Pairwise Semantic Similarity for a List of Genes
Semantic Similarity Between two GO terms lists
termSim
wangMethod
Link to this section Functions
GOSemSimDATA_class()
Class "GOSemSimDATA" This class stores IC and gene to go mapping for semantic similarity measurement
Description
Class "GOSemSimDATA" This class stores IC and gene to go mapping for semantic similarity measurement
GOSemSim_package()
Gene Ontology-based Sematic Similarity Measures
Description
Implementation of semantic similarity measures to estimate the functional similarities among Gene Ontology terms and gene products
Details
Quantitative measure of functional similarities among gene products is important for post-genomics study. and widely used in gene function prediction, cluster analysis and pathway modeling. This package is designed to estimate the GO terms' and genes' semantic similarities. Implemented five methods proposed by Resnik, Schlicker, Jiang, Lin and Wang respectively. Support many species, including Anopheles, Arabidopsis, Bovine, Canine, Chicken, Chimp, E coli strain K12 and strain Sakai, Fly, Human, Malaria, Mouse, Pig, Rhesus, Rat, Worm, Xenopus, Yeast, Zebrafish.
list(list("ll"), list(" Package: ", list(), " GOSemSim", list(), " Type: ", list(), " Package", list(), " Version: ", list(), " ", "2.0.0", list(), " Date: ", list(), " 09-11-2012", list(), " biocViews:", list(), " GO, Clustering, Pathways, ", "Anopheles_gambiae, Arabidopsis_thaliana, Bos_taurus, Caenorhabditis_elegans, ", "Canis_familiaris, Danio_rerio, Drosophila_melanogaster, Escherichia_coli, ", "Gallus_gallus, Homo_sapiens, Mus_musculus, Pan_troglodytes, ", "Plasmodium_falciparum, Rattus_norvegicus, Saccharomyces_cerevisiae, ",
"Streptomyces_coelicolor, Sus_scrofa, Xenopus_laevis", list(), " Depends:", list(), " ", list(), "
", "Imports: ", list(), " methods, AnnotationDbi, GO.db", list(), " ", "Suggests:", list(), " clusterProfiler, DOSE", list(), " ", "License: ", list(), " Artistic-2.0", list(), " "))
Seealso
goSim
mgoSim
geneSim
mgeneSim
clusterSim
mclusterSim
Author
Guangchuang Yu
Maintainer: Guangchuang Yu guangchuangyu@gmail.com
References
Yu et al. (2010) GOSemSim: an R package for measuring semantic similarity among GO terms and gene products Bioinformatics (Oxford, England), 26:7 976--978, April 2010. ISSN 1367-4803 http://bioinformatics.oxfordjournals.org/cgi/content/abstract/26/7/976 PMID: 20179076
clusterSim()
Semantic Similarity Between Two Gene Clusters
Description
Given two gene clusters, this function calculates semantic similarity between them.
Usage
clusterSim(cluster1, cluster2, semData, measure = "Wang", drop = "IEA",
combine = "BMA")
Arguments
Argument | Description |
---|---|
cluster1 | A set of gene IDs. |
cluster2 | Another set of gene IDs. |
semData | GOSemSimDATA object |
measure | One of "Resnik", "Lin", "Rel", "Jiang" and "Wang" methods. |
drop | A set of evidence codes based on which certain annotations are dropped. Use NULL to keep all GO annotations. |
combine | One of "max", "avg", "rcmax", "BMA" methods, for combining semantic similarity scores of multiple GO terms associated with protein or multiple proteins assiciated with protein cluster. |
Value
similarity
Seealso
goSim
mgoSim
geneSim
mgeneSim
mclusterSim
References
Yu et al. (2010) GOSemSim: an R package for measuring semantic similarity among GO terms and gene products Bioinformatics (Oxford, England), 26:7 976--978, April 2010. ISSN 1367-4803 http://bioinformatics.oxfordjournals.org/cgi/content/abstract/26/7/976 PMID: 20179076
Examples
d <- godata('org.Hs.eg.db', ont="MF", computeIC=FALSE)
cluster1 <- c("835", "5261","241", "994")
cluster2 <- c("307", "308", "317", "321", "506", "540", "378", "388", "396")
clusterSim(cluster1, cluster2, semData=d, measure="Wang")
combineScores()
combining similarity matrix to similarity score
Description
Functions for combining similarity matrix to similarity score
Usage
combineScores(SimScores, combine)
Arguments
Argument | Description |
---|---|
SimScores | similarity matrix |
combine | combine method |
Value
similarity value
Author
Guangchuang Yu http://guangchuangyu.github.io
geneSim()
Semantic Similarity Between two Genes
Description
Given two genes, this function will calculate the semantic similarity between them, and return their semantic similarity and the corresponding GO terms
Usage
geneSim(gene1, gene2, semData, measure = "Wang", drop = "IEA",
combine = "BMA")
Arguments
Argument | Description |
---|---|
gene1 | Entrez gene id. |
gene2 | Another entrez gene id. |
semData | GOSemSimDATA object |
measure | One of "Resnik", "Lin", "Rel", "Jiang" and "Wang" methods. |
drop | A set of evidence codes based on which certain annotations are dropped. Use NULL to keep all GO annotations. |
combine | One of "max", "avg", "rcmax", "BMA" methods, for combining semantic similarity scores of multiple GO terms associated with protein or multiple proteins assiciated with protein cluster. |
Value
list of similarity value and corresponding GO.
Seealso
goSim
mgoSim
mgeneSim
clusterSim
mclusterSim
References
Yu et al. (2010) GOSemSim: an R package for measuring semantic similarity among GO terms and gene products Bioinformatics (Oxford, England), 26:7 976--978, April 2010. ISSN 1367-4803 http://bioinformatics.oxfordjournals.org/cgi/content/abstract/26/7/976 PMID: 20179076
Examples
d <- godata('org.Hs.eg.db', ont="MF", computeIC=FALSE)
geneSim("241", "251", semData=d, measure="Wang")
goSim()
Semantic Similarity Between Two GO Terms
Description
Given two GO IDs, this function calculates their semantic similarity.
Usage
goSim(GOID1, GOID2, semData, measure = "Wang")
Arguments
Argument | Description |
---|---|
GOID1 | GO ID 1. |
GOID2 | GO ID 2. |
semData | GOSemSimDATA object |
measure | One of "Resnik", "Lin", "Rel", "Jiang" and "Wang" methods. |
Value
similarity
Seealso
mgoSim
geneSim
mgeneSim
clusterSim
mclusterSim
References
Yu et al. (2010) GOSemSim: an R package for measuring semantic similarity among GO terms and gene products Bioinformatics (Oxford, England), 26:7 976--978, April 2010. ISSN 1367-4803 http://bioinformatics.oxfordjournals.org/cgi/content/abstract/26/7/976 PMID: 20179076
Examples
d <- godata('org.Hs.eg.db', ont="MF", computeIC=FALSE)
goSim("GO:0004022", "GO:0005515", semData=d, measure="Wang")
go_term_table()
Information content of GO terms
Description
These datasets are the information contents of GOterms.
References
Yu et al. (2010) GOSemSim: an R package for measuring semantic similarity among GO terms and gene products Bioinformatics (Oxford, England), 26:7 976--978, April 2010. ISSN 1367-4803 http://bioinformatics.oxfordjournals.org/cgi/content/abstract/26/7/976 PMID: 20179076
godata()
godata
Description
prepare GO DATA for measuring semantic similarity
Usage
godata(OrgDb = NULL, keytype = "ENTREZID", ont, computeIC = TRUE)
Arguments
Argument | Description |
---|---|
OrgDb | OrgDb object |
keytype | keytype |
ont | one of 'BP', 'MF', 'CC' |
computeIC | logical, whether computer IC |
Value
GOSemSimDATA object
Author
Guangchuang Yu
infoContentMethod()
information content based methods
Description
Information Content Based Methods for semantic similarity measuring
Usage
infoContentMethod(ID1, ID2, method, godata)
Arguments
Argument | Description |
---|---|
ID1 | Ontology Term |
ID2 | Ontology Term |
method | one of "Resnik", "Jiang", "Lin" and "Rel". |
godata | GOSemSimDATA object |
Details
implemented for methods proposed by Resnik, Jiang, Lin and Schlicker.
Value
semantic similarity score
Author
Guangchuang Yu https://guangchuangyu.github.io
load_OrgDb()
load_OrgDb
Description
load OrgDb
Usage
load_OrgDb(OrgDb)
Arguments
Argument | Description |
---|---|
OrgDb | OrgDb object or OrgDb name |
Value
OrgDb object
Author
Guangchuang Yu
mclusterSim()
Pairwise Semantic Similarities for a List of Gene Clusters
Description
Given a list of gene clusters, this function calculates pairwise semantic similarities.
Usage
mclusterSim(clusters, semData, measure = "Wang", drop = "IEA",
combine = "BMA")
Arguments
Argument | Description |
---|---|
clusters | A list of gene clusters. |
semData | GOSemSimDATA object |
measure | One of "Resnik", "Lin", "Rel", "Jiang" and "Wang" methods. |
drop | A set of evidence codes based on which certain annotations are dropped. Use NULL to keep all GO annotations. |
combine | One of "max", "avg", "rcmax", "BMA" methods, for combining semantic similarity scores of multiple GO terms associated with protein or multiple proteins assiciated with protein cluster. |
Value
similarity matrix
Seealso
goSim
mgoSim
geneSim
mgeneSim
clusterSim
References
Yu et al. (2010) GOSemSim: an R package for measuring semantic similarity among GO terms and gene products Bioinformatics (Oxford, England), 26:7 976--978, April 2010. ISSN 1367-4803 http://bioinformatics.oxfordjournals.org/cgi/content/abstract/26/7/976 PMID: 20179076
Examples
d <- godata('org.Hs.eg.db', ont="MF", computeIC=FALSE)
cluster1 <- c("835", "5261","241")
cluster2 <- c("578","582")
cluster3 <- c("307", "308", "317")
clusters <- list(a=cluster1, b=cluster2, c=cluster3)
mclusterSim(clusters, semData=d, measure="Wang")
mgeneSim()
Pairwise Semantic Similarity for a List of Genes
Description
Given a list of genes, this function calculates pairwise semantic similarities.
Usage
mgeneSim(genes, semData, measure = "Wang", drop = "IEA",
combine = "BMA", verbose = TRUE)
Arguments
Argument | Description |
---|---|
genes | A list of entrez gene IDs. |
semData | GOSemSimDATA object |
measure | One of "Resnik", "Lin", "Rel", "Jiang" and "Wang" methods. |
drop | A set of evidence codes based on which certain annotations are dropped. Use NULL to keep all GO annotations. |
combine | One of "max", "avg", "rcmax", "BMA" methods, for combining semantic similarity scores of multiple GO terms associated with protein or multiple proteins assiciated with protein cluster. |
verbose | show progress bar or not. |
Value
similarity matrix
Seealso
goSim
mgoSim
geneSim
clusterSim
mclusterSim
References
Yu et al. (2010) GOSemSim: an R package for measuring semantic similarity among GO terms and gene products Bioinformatics (Oxford, England), 26:7 976--978, April 2010. ISSN 1367-4803 http://bioinformatics.oxfordjournals.org/cgi/content/abstract/26/7/976 PMID: 20179076
Examples
d <- godata('org.Hs.eg.db', ont="MF", computeIC=FALSE)
mgeneSim(c("835", "5261","241"), semData=d, measure="Wang")
mgoSim()
Semantic Similarity Between two GO terms lists
Description
Given two GO term sets, this function will calculate the semantic similarity between them, and return their semantic similarity
Usage
mgoSim(GO1, GO2, semData, measure = "Wang", combine = "BMA")
Arguments
Argument | Description |
---|---|
GO1 | A set of go terms. |
GO2 | Another set of go terms. |
semData | GOSemSimDATA object |
measure | One of "Resnik", "Lin", "Rel", "Jiang" and "Wang" methods. |
combine | One of "max", "avg", "rcmax", "BMA" methods, for combining semantic similarity scores of multiple GO terms associated with protein or multiple proteins assiciated with protein cluster. |
Value
similarity
Seealso
goSim
geneSim
mgeneSim
clusterSim
mclusterSim
References
Yu et al. (2010) GOSemSim: an R package for measuring semantic similarity among GO terms and gene products Bioinformatics (Oxford, England), 26:7 976--978, April 2010. ISSN 1367-4803 http://bioinformatics.oxfordjournals.org/cgi/content/abstract/26/7/976 PMID: 20179076
Examples
d <- godata('org.Hs.eg.db', ont="MF", computeIC=FALSE)
go1 <- c("GO:0004022", "GO:0004024", "GO:0004023")
go2 <- c("GO:0009055", "GO:0020037")
mgoSim("GO:0003824", go2, semData=d, measure="Wang")
mgoSim(go1, go2, semData=d, measure="Wang")
termSim()
termSim
Description
measuring similarities between two term vectors.
Usage
termSim(t1, t2, semData, method = c("Wang", "Resnik", "Rel", "Jiang",
"Lin"))
Arguments
Argument | Description |
---|---|
t1 | term vector |
t2 | term vector |
semData | GOSemSimDATA object |
method | one of "Wang", "Resnik", "Rel", "Jiang", and "Lin". |
Details
provide two term vectors, this function will calculate their similarities.
Value
score matrix
Author
Guangchuang Yu http://guangchuangyu.github.io
wangMethod_internal()
wangMethod
Description
Method Wang for semantic similarity measuring
Usage
wangMethod_internal(ID1, ID2, ont = "BP")
Arguments
Argument | Description |
---|---|
ID1 | Ontology Term |
ID2 | Ontology Term |
ont | Ontology |
Value
semantic similarity score
Author
Guangchuang Yu http://ygc.name