bioconductor v3.9.0 GOSemSim

The semantic comparisons of Gene Ontology (GO) annotations provide

Link to this section Summary

Functions

Class "GOSemSimDATA" This class stores IC and gene to go mapping for semantic similarity measurement

Gene Ontology-based Sematic Similarity Measures

Semantic Similarity Between Two Gene Clusters

combining similarity matrix to similarity score

Semantic Similarity Between two Genes

Semantic Similarity Between Two GO Terms

Information content of GO terms

godata

information content based methods

load_OrgDb

Pairwise Semantic Similarities for a List of Gene Clusters

Pairwise Semantic Similarity for a List of Genes

Semantic Similarity Between two GO terms lists

termSim

Link to this section Functions

Link to this function

GOSemSimDATA_class()

Class "GOSemSimDATA" This class stores IC and gene to go mapping for semantic similarity measurement

Description

Class "GOSemSimDATA" This class stores IC and gene to go mapping for semantic similarity measurement

Link to this function

GOSemSim_package()

Gene Ontology-based Sematic Similarity Measures

Description

Implementation of semantic similarity measures to estimate the functional similarities among Gene Ontology terms and gene products

Details

Quantitative measure of functional similarities among gene products is important for post-genomics study. and widely used in gene function prediction, cluster analysis and pathway modeling. This package is designed to estimate the GO terms' and genes' semantic similarities. Implemented five methods proposed by Resnik, Schlicker, Jiang, Lin and Wang respectively. Support many species, including Anopheles, Arabidopsis, Bovine, Canine, Chicken, Chimp, E coli strain K12 and strain Sakai, Fly, Human, Malaria, Mouse, Pig, Rhesus, Rat, Worm, Xenopus, Yeast, Zebrafish.

list(list("ll"), list(" Package: ", list(), " GOSemSim", list(), " Type: ", list(), " Package", list(), " Version: ", list(), " ", "2.0.0", list(), " Date: ", list(), " 09-11-2012", list(), " biocViews:", list(), " GO, Clustering, Pathways, ", "Anopheles_gambiae, Arabidopsis_thaliana, Bos_taurus, Caenorhabditis_elegans, ", "Canis_familiaris, Danio_rerio, Drosophila_melanogaster, Escherichia_coli, ", "Gallus_gallus, Homo_sapiens, Mus_musculus, Pan_troglodytes, ", "Plasmodium_falciparum, Rattus_norvegicus, Saccharomyces_cerevisiae, ",

"Streptomyces_coelicolor, Sus_scrofa, Xenopus_laevis", list(), " Depends:", list(), " ", list(), "

", "Imports: ", list(), " methods, AnnotationDbi, GO.db", list(), " ", "Suggests:", list(), " clusterProfiler, DOSE", list(), " ", "License: ", list(), " Artistic-2.0", list(), " "))

Seealso

goSim mgoSim geneSim mgeneSim clusterSim mclusterSim

Author

Guangchuang Yu

Maintainer: Guangchuang Yu guangchuangyu@gmail.com

References

Yu et al. (2010) GOSemSim: an R package for measuring semantic similarity among GO terms and gene products Bioinformatics (Oxford, England), 26:7 976--978, April 2010. ISSN 1367-4803 http://bioinformatics.oxfordjournals.org/cgi/content/abstract/26/7/976 PMID: 20179076

Semantic Similarity Between Two Gene Clusters

Description

Given two gene clusters, this function calculates semantic similarity between them.

Usage

clusterSim(cluster1, cluster2, semData, measure = "Wang", drop = "IEA",
  combine = "BMA")

Arguments

ArgumentDescription
cluster1A set of gene IDs.
cluster2Another set of gene IDs.
semDataGOSemSimDATA object
measureOne of "Resnik", "Lin", "Rel", "Jiang" and "Wang" methods.
dropA set of evidence codes based on which certain annotations are dropped. Use NULL to keep all GO annotations.
combineOne of "max", "avg", "rcmax", "BMA" methods, for combining semantic similarity scores of multiple GO terms associated with protein or multiple proteins assiciated with protein cluster.

Value

similarity

Seealso

goSim mgoSim geneSim mgeneSim mclusterSim

References

Yu et al. (2010) GOSemSim: an R package for measuring semantic similarity among GO terms and gene products Bioinformatics (Oxford, England), 26:7 976--978, April 2010. ISSN 1367-4803 http://bioinformatics.oxfordjournals.org/cgi/content/abstract/26/7/976 PMID: 20179076

Examples

d <- godata('org.Hs.eg.db', ont="MF", computeIC=FALSE)
cluster1 <- c("835", "5261","241", "994")
cluster2 <- c("307", "308", "317", "321", "506", "540", "378", "388", "396")
clusterSim(cluster1, cluster2, semData=d, measure="Wang")
Link to this function

combineScores()

combining similarity matrix to similarity score

Description

Functions for combining similarity matrix to similarity score

Usage

combineScores(SimScores, combine)

Arguments

ArgumentDescription
SimScoressimilarity matrix
combinecombine method

Value

similarity value

Author

Guangchuang Yu http://guangchuangyu.github.io

Semantic Similarity Between two Genes

Description

Given two genes, this function will calculate the semantic similarity between them, and return their semantic similarity and the corresponding GO terms

Usage

geneSim(gene1, gene2, semData, measure = "Wang", drop = "IEA",
  combine = "BMA")

Arguments

ArgumentDescription
gene1Entrez gene id.
gene2Another entrez gene id.
semDataGOSemSimDATA object
measureOne of "Resnik", "Lin", "Rel", "Jiang" and "Wang" methods.
dropA set of evidence codes based on which certain annotations are dropped. Use NULL to keep all GO annotations.
combineOne of "max", "avg", "rcmax", "BMA" methods, for combining semantic similarity scores of multiple GO terms associated with protein or multiple proteins assiciated with protein cluster.

Value

list of similarity value and corresponding GO.

Seealso

goSim mgoSim mgeneSim clusterSim mclusterSim

References

Yu et al. (2010) GOSemSim: an R package for measuring semantic similarity among GO terms and gene products Bioinformatics (Oxford, England), 26:7 976--978, April 2010. ISSN 1367-4803 http://bioinformatics.oxfordjournals.org/cgi/content/abstract/26/7/976 PMID: 20179076

Examples

d <- godata('org.Hs.eg.db', ont="MF", computeIC=FALSE)
geneSim("241", "251", semData=d, measure="Wang")

Semantic Similarity Between Two GO Terms

Description

Given two GO IDs, this function calculates their semantic similarity.

Usage

goSim(GOID1, GOID2, semData, measure = "Wang")

Arguments

ArgumentDescription
GOID1GO ID 1.
GOID2GO ID 2.
semDataGOSemSimDATA object
measureOne of "Resnik", "Lin", "Rel", "Jiang" and "Wang" methods.

Value

similarity

Seealso

mgoSim geneSim mgeneSim clusterSim mclusterSim

References

Yu et al. (2010) GOSemSim: an R package for measuring semantic similarity among GO terms and gene products Bioinformatics (Oxford, England), 26:7 976--978, April 2010. ISSN 1367-4803 http://bioinformatics.oxfordjournals.org/cgi/content/abstract/26/7/976 PMID: 20179076

Examples

d <- godata('org.Hs.eg.db', ont="MF", computeIC=FALSE)
goSim("GO:0004022", "GO:0005515", semData=d, measure="Wang")
Link to this function

go_term_table()

Information content of GO terms

Description

These datasets are the information contents of GOterms.

References

Yu et al. (2010) GOSemSim: an R package for measuring semantic similarity among GO terms and gene products Bioinformatics (Oxford, England), 26:7 976--978, April 2010. ISSN 1367-4803 http://bioinformatics.oxfordjournals.org/cgi/content/abstract/26/7/976 PMID: 20179076

godata

Description

prepare GO DATA for measuring semantic similarity

Usage

godata(OrgDb = NULL, keytype = "ENTREZID", ont, computeIC = TRUE)

Arguments

ArgumentDescription
OrgDbOrgDb object
keytypekeytype
ontone of 'BP', 'MF', 'CC'
computeIClogical, whether computer IC

Value

GOSemSimDATA object

Author

Guangchuang Yu

Link to this function

infoContentMethod()

information content based methods

Description

Information Content Based Methods for semantic similarity measuring

Usage

infoContentMethod(ID1, ID2, method, godata)

Arguments

ArgumentDescription
ID1Ontology Term
ID2Ontology Term
methodone of "Resnik", "Jiang", "Lin" and "Rel".
godataGOSemSimDATA object

Details

implemented for methods proposed by Resnik, Jiang, Lin and Schlicker.

Value

semantic similarity score

Author

Guangchuang Yu https://guangchuangyu.github.io

load_OrgDb

Description

load OrgDb

Usage

load_OrgDb(OrgDb)

Arguments

ArgumentDescription
OrgDbOrgDb object or OrgDb name

Value

OrgDb object

Author

Guangchuang Yu

Pairwise Semantic Similarities for a List of Gene Clusters

Description

Given a list of gene clusters, this function calculates pairwise semantic similarities.

Usage

mclusterSim(clusters, semData, measure = "Wang", drop = "IEA",
  combine = "BMA")

Arguments

ArgumentDescription
clustersA list of gene clusters.
semDataGOSemSimDATA object
measureOne of "Resnik", "Lin", "Rel", "Jiang" and "Wang" methods.
dropA set of evidence codes based on which certain annotations are dropped. Use NULL to keep all GO annotations.
combineOne of "max", "avg", "rcmax", "BMA" methods, for combining semantic similarity scores of multiple GO terms associated with protein or multiple proteins assiciated with protein cluster.

Value

similarity matrix

Seealso

goSim mgoSim geneSim mgeneSim clusterSim

References

Yu et al. (2010) GOSemSim: an R package for measuring semantic similarity among GO terms and gene products Bioinformatics (Oxford, England), 26:7 976--978, April 2010. ISSN 1367-4803 http://bioinformatics.oxfordjournals.org/cgi/content/abstract/26/7/976 PMID: 20179076

Examples

d <- godata('org.Hs.eg.db', ont="MF", computeIC=FALSE)
cluster1 <- c("835", "5261","241")
cluster2 <- c("578","582")
cluster3 <- c("307", "308", "317")
clusters <- list(a=cluster1, b=cluster2, c=cluster3)
mclusterSim(clusters, semData=d, measure="Wang")

Pairwise Semantic Similarity for a List of Genes

Description

Given a list of genes, this function calculates pairwise semantic similarities.

Usage

mgeneSim(genes, semData, measure = "Wang", drop = "IEA",
  combine = "BMA", verbose = TRUE)

Arguments

ArgumentDescription
genesA list of entrez gene IDs.
semDataGOSemSimDATA object
measureOne of "Resnik", "Lin", "Rel", "Jiang" and "Wang" methods.
dropA set of evidence codes based on which certain annotations are dropped. Use NULL to keep all GO annotations.
combineOne of "max", "avg", "rcmax", "BMA" methods, for combining semantic similarity scores of multiple GO terms associated with protein or multiple proteins assiciated with protein cluster.
verboseshow progress bar or not.

Value

similarity matrix

Seealso

goSim mgoSim geneSim clusterSim mclusterSim

References

Yu et al. (2010) GOSemSim: an R package for measuring semantic similarity among GO terms and gene products Bioinformatics (Oxford, England), 26:7 976--978, April 2010. ISSN 1367-4803 http://bioinformatics.oxfordjournals.org/cgi/content/abstract/26/7/976 PMID: 20179076

Examples

d <- godata('org.Hs.eg.db', ont="MF", computeIC=FALSE)
mgeneSim(c("835", "5261","241"), semData=d, measure="Wang")

Semantic Similarity Between two GO terms lists

Description

Given two GO term sets, this function will calculate the semantic similarity between them, and return their semantic similarity

Usage

mgoSim(GO1, GO2, semData, measure = "Wang", combine = "BMA")

Arguments

ArgumentDescription
GO1A set of go terms.
GO2Another set of go terms.
semDataGOSemSimDATA object
measureOne of "Resnik", "Lin", "Rel", "Jiang" and "Wang" methods.
combineOne of "max", "avg", "rcmax", "BMA" methods, for combining semantic similarity scores of multiple GO terms associated with protein or multiple proteins assiciated with protein cluster.

Value

similarity

Seealso

goSim geneSim mgeneSim clusterSim mclusterSim

References

Yu et al. (2010) GOSemSim: an R package for measuring semantic similarity among GO terms and gene products Bioinformatics (Oxford, England), 26:7 976--978, April 2010. ISSN 1367-4803 http://bioinformatics.oxfordjournals.org/cgi/content/abstract/26/7/976 PMID: 20179076

Examples

d <- godata('org.Hs.eg.db', ont="MF", computeIC=FALSE)
go1 <- c("GO:0004022", "GO:0004024", "GO:0004023")
go2 <- c("GO:0009055", "GO:0020037")
mgoSim("GO:0003824", go2, semData=d, measure="Wang")
mgoSim(go1, go2, semData=d, measure="Wang")

termSim

Description

measuring similarities between two term vectors.

Usage

termSim(t1, t2, semData, method = c("Wang", "Resnik", "Rel", "Jiang",
  "Lin"))

Arguments

ArgumentDescription
t1term vector
t2term vector
semDataGOSemSimDATA object
methodone of "Wang", "Resnik", "Rel", "Jiang", and "Lin".

Details

provide two term vectors, this function will calculate their similarities.

Value

score matrix

Author

Guangchuang Yu http://guangchuangyu.github.io

Link to this function

wangMethod_internal()

wangMethod

Description

Method Wang for semantic similarity measuring

Usage

wangMethod_internal(ID1, ID2, ont = "BP")

Arguments

ArgumentDescription
ID1Ontology Term
ID2Ontology Term
ontOntology

Value

semantic similarity score

Author

Guangchuang Yu http://ygc.name