bioconductor v3.9.0 Marray
Class definitions for two-color spotted microarray data.
Link to this section Summary
Functions
Boxplots for cDNA microarray spot statistics
Subsetting methods for microarray objects
Combine marrayRaw, marrayNorm or marrayInfo Objects
Verifying the order between intensities matrix and target file information
Coerce an object to belong to a given microarray class
Retrieve the Dimensions of an marrayRaw, marrayNorm or marrayInfo Object
Find ID when given an accession number
Display gene list as a HTML page
Color image for cDNA microarray spot statistics
Stratified bivariate robust local regression
Boxplots for cDNA microarray spot statistics
Calibration bar for color images
Generate grid and spot matrix coordinates
Generate spot indices
Generate a marrayLayout object
Weights for composite normalization
Generate plate IDs
Convert grid and spot matrix coordinates to spot indices
Default graphical parameters for microarray objects
Replace graphical default parameters by user supplied parameters
Replace default arguments of a function by user supplied values
Generating a vector recording the control status of the spotted probe sequences.
Table of spot coordinates and gene names
Color image for cDNA microarray spot statistics
Color image for cDNA microarray spot statistics
Convert spot indices to grid and spot matrix coordinates
Add a legend to a plot
Stratified univariate robust local regression
Add smoothed fits to a plot
Stratified MAD calculation
Stratified median calculation
Basic Statistical Functions for Handling Missing Values
Simple location and scale normalization function
2D spatial location normalization function
Intensity dependent location normalization function
MAD scale normalization function
Main function for location and scale normalization of cDNA microarray data
Median location normalization function
Simple scale normalization function
Convert a numeric vector of indices to a logical vector
Microarray color palette
Scatter-plots for cDNA microarray spot statistics
Scatter-plots with fitted curves and text
Select genes according to the values of a few different statistics
Highlight points on a plot
Identify extreme values
Changing signs for two sample analysis
Creating URL strings for external database links
Class "marrayInfo", description of target samples or spotted probe sequences
Class "marrayLayout", classes and methods for layout parameters of cDNA microarrays
Class "marrayNorm", classes and methods for post-normalization cDNA microarray intensity data
Class "marrayRaw", classes and methods for pre-normalization cDNA microarray intensity data
Internal marray functions
Determine the operon oligo set ID
Scatter-plots for cDNA microarray spot statistics
Printing summary methods for microarray objects
Reading GenePix Gal file
Create objects of class marrayInfo
Create objects of class marrayLayout
Create objects of class "marrayRaw"
Remove missing values
Show Large Data Object - class
Rank genes according to the value of a statistic.
Sort Genes According to the Value of a Statistic
Gene expression data from Swirl zebrafish cDNA microarray experiment
Data Output
Data Output
Data Output
Link to this section Functions
boxplot()
Boxplots for cDNA microarray spot statistics
Description
The function boxplot
produces boxplots of microarray spot
statistics for the classes "
,
"
.
We encourage users to use boxplot
rather than maBoxplot
.
The name of the arguments have changed slightly.
Usage
list(list("boxplot"), list("marrayRaw"))(x, xvar="maPrintTip", yvar="maM", ...)
list(list("boxplot"), list("marrayNorm"))(x, xvar="maPrintTip", yvar="maM", ...)
Arguments
Argument | Description |
---|---|
x | Microarray object of class " , " |
xvar | Name of accessor method for the spot statistic used to stratify the data, typically a slot name for the microarray layout object (see " ) such as maPlate or a method such as maPrintTip . If x is NULL, the data are not stratified. |
yvar | Name of accessor method for the spot statistic of interest, typically a slot name for the microarray object m , such as maM . |
list() | Optional graphical parameters, see par . |
Details
If there are more than one array in the batch, the function produces a
boxplot for each array in the batch. Such plots are useful when
assessing the need for between array normalization, for example, to deal
with scale differences among different arrays. Default graphical
parameters are chosen for convenience using the function
maDefaultPar
(e.g. color palette, axis labels, plot
title) but the user has the option to overwrite these parameters at any
point.
Seealso
Author
Jean Yang and Sandrine Dudoit
References
S. Dudoit and Y. H. Yang. (2002). Bioconductor R packages for exploratory analysis and normalization of cDNA microarray data. In G. Parmigiani, E. S. Garrett, R. A. Irizarry and S. L. Zeger, editors, The Analysis of Gene Expression Data: Methods and Software , Springer, New York.
Examples
# To see the demo type demo(marrayPlots)
# Examples use swirl dataset, for description type ? swirl
data(swirl)
# Boxplots of pre-normalization log-ratios M for each of the 16
# print-tip-groups for the Swirl 93 array.
# - Default arguments
boxplot(swirl[,3])
# All spots
boxplot(swirl[,3], xvar=NULL, col="green")
# Boxplots of pre-normalization red foreground intensities for each grid row
# for the Swirl 81 array.
boxplot(swirl[,1], xvar="maGridRow", yvar = "maRf", main = "Swirl array 81: pre-normalization red foreground intensity")
# Boxplots of pre-normalization log-ratios for each array in swirl
boxplot(swirl, main="Swirl arrays: pre-normalization log-ratios")
bracketMethods()
Subsetting methods for microarray objects
Description
Subsetting methods were defined for the microarray classes,
marrayInfo
,
marrayLayout
, marrayRaw
and
marrayNorm
. These methods create instances of the given
class, for a subset of spots and/or arrays in a batch.
cbind()
Combine marrayRaw, marrayNorm or marrayInfo Objects
Description
Combine a series of marrayRaw
, marrayNorm
and
marrayInfo
objects.
Usage
list(list("cbind"), list("marrayRaw"))(list(), deparse.level=1)
list(list("cbind"), list("marrayNorm"))(list(), deparse.level=1)
list(list("rbind"), list("marrayInfo"))(list(), deparse.level=1)
Arguments
Argument | Description |
---|---|
list() | marrayRaw objects or marrayNorm objects |
deparse.level | not currently used, see cbind in the base package |
Details
cbind
combines data objects assuming the same gene lists but
different arrays.
rbind
combines data objects assuming equivalent arrays, i.e., the
same RNA targets, but different genes.
For cbind
, the matrices o f expression data from the individual
objects are cbinded.
The data.frames of target information, if they exist, are rbinded.
The combined data object will preserve any additional components or
attributes found in the first object to be combined.
For rbind
, the matrices of expression data are rbinded while the
target information, in any, is unchanged.
Seealso
cbind
in the base package.
Author
Jean Yang
checkTargetInfo()
Verifying the order between intensities matrix and target file information
Description
Check that the foreground and backgruond intensities are stored in the same order as provided in the first column of target file.
Usage
checkTargetInfo(mraw)
Arguments
Argument | Description |
---|---|
mraw | Object of class marrayRaw or marryNorm . |
Value
A logical value. This function returns "TRUE" if the first column from the Target information is the same order as the foreground and backgruond intensities.
Author
Yee Hwa (Jean) Yang
Examples
datadir <- system.file("swirldata", package="marray")
swirl.targets <- read.marrayInfo(file.path(datadir, "SwirlSample.txt"))
data(swirl)
swirl@maTargets <- swirl.targets
checkTargetInfo(swirl)
checkTargetInfo(swirl[, 2:4])
## reorder
swirl@maTargets <- swirl.targets[c(2:4, 1),]
checkTargetInfo(swirl)
coerce_methods()
Coerce an object to belong to a given microarray class
Description
Coercing methods were defined to convert microarray objects of one class
into objects of another class, e.g., instances of the
"
class into instances of the
"
class.
Note
Use Package convert to convert object to other data types such as
ExpressionSet
and MAList
.
dim()
Retrieve the Dimensions of an marrayRaw, marrayNorm or marrayInfo Object
Description
Retrieve the number of rows (genes) and columns (arrays) for an marrayRaw, marrayNorm or marrayInfo object.
Usage
list(list("dim"), list("marrayRaw"))(x)
Arguments
Argument | Description |
---|---|
x | an object of class marrayRaw , marrayNorm or marrayInfo |
Details
Microarray data objects share many analogies with ordinary matrices in which the rows correspond to spots or genes and the columns to arrays. These methods allow one to extract the size of microarray data objects in the same way that one would do for ordinary matrices.
A consequence is that row and column commands nrow(x)
, ncol(x)
and so on also work.
Value
Numeric vector of length 2. The first element is the number of rows (genes) and the second is the number of columns (arrays).
Seealso
dim
in the base package.
Author
modified from Gordon Smyth's function
Examples
M <- A <- matrix(11:14,4,2)
rownames(M) <- rownames(A) <- c("a","b","c","d")
colnames(M) <- colnames(A) <- c("A1","A2")
MA <- new("marrayNorm", maM=M,maA=A)
dim(MA)
dim(M)
findID()
Find ID when given an accession number
Description
Search gene ID with a vector of accession number from gene names or ID values.
Usage
findID(text, Gnames = gnames, ID = "Name")
Arguments
Argument | Description |
---|---|
text | A character strings of gene names or id names. |
Gnames | An objects of marrayRaw , marrayNorm , ExpressionSet or data.frame of gene names information. |
ID | The column of ID corresponding to 'text'. |
Value
A numeric vector the gene ID.
Seealso
Author
Yee Hwa (Jean) Yang
Examples
data(swirl)
findID("fb24a09", swirl, ID="ID")
findID("geno1", swirl)
htmlPage()
Display gene list as a HTML page
Description
Given a set of index to a data.frame containing gene names information. We create a web page with one element per genes that contains URLs links to various external database links. E.g Operon oligodatabase , Riken, GenBank and PubMed web sites.
Usage
htmlPage(genelist, filename = "GeneList.html", geneNames =
Gnames, mapURL = SFGL, othernames, title, table.head,
table.center = TRUE, disp = c("browser", "file")[1])
table2html(restable, filename = "GeneList.html", mapURL = SFGL,
title, table.head, table.center = TRUE, disp =
c("browser", "file")[1])
Arguments
Argument | Description |
---|---|
restable | A data.frame that contains only the information you wish to display in the html file. The rows corresponds to a different DNA spots. |
genelist | A numeric vector of index to a data.frame |
filename | The name of the file to store the HTML in. |
geneNames | A data.frame containing the information related the each DNA spots. |
mapURL | A matrix of characters containing the URL for various external database. E.g SFGL . |
othernames | A data.frame containing other information. |
title | Title of the HTML page |
table.head | A character vector of column labels for the table |
table.center | A logical indicating whether the table should be centered |
disp | Either "File" or "Browser" (default is Browser). File will save the information in html file, while Browser will create an html files and display information in the user's browser. |
Details
This function is an extension to ll.htmlpage
Value
No value is return, the function produce a html file "filename" and output the results in a browser.
Seealso
ll.htmlpage
, URLstring
, widget.mapGeneInfo
Author
Yee Hwa Yang
Examples
##library(annotate)
data(swirl)
Gnames <- maGeneTable(swirl)
swirlmap <- mapGeneInfo(Name = "none", ID="genbank")
## htmlPage(100:110, geneNames = Gnames, mapURL = swirlmap, title="Swirl")
moreinfo <- round(maM(swirl), 2)
swirlmap <- mapGeneInfo(Name = "pubmed", ID="genbank")
##htmlPage(100:110, geneNames = Gnames, mapURL = swirlmap, othernames=moreinfo, title="Swirl", disp="file")
image()
Color image for cDNA microarray spot statistics
Description
We encourage users calling "image" rather than "maImage". The name of
the arguments are change slightly.
The function image
creates spatial images of shades of gray or
colors that correspond to the values of a statistic for each spot on the
array. The statistic can be the intensity log-ratio M, a spot quality
measure (e.g. spot size or shape), or a test statistic. This function
can be used to explore whether there are any spatial effects in the
data, for example, print-tip or cover-slip effects.
Usage
list(list("image"), list("marrayRaw"))(x, xvar = "maM", subset = TRUE, col, contours=FALSE, bar = TRUE, overlay=NULL, ol.col=1, colorinfo=FALSE, ...)
list(list("image"), list("marrayNorm"))(x, xvar = "maM", subset = TRUE, col, contours=FALSE, bar = TRUE, overlay=NULL, ol.col=1, colorinfo=FALSE, ...)
Arguments
Argument | Description |
---|---|
x | Microarray object of class " , " |
xvar | Name of accessor function for the spot statistic of interest, typically a slot name for the microarray object x , such as maM . |
subset | A "logical" or "numeric" vector indicating the subset of spots to display on the image. |
col | List of colors such as that generated by rainbow, heat.colors, topo.colors, terrain.colors, or similar functions. In addition to these color palette functions, a new function maPalette was defined to generate color palettes from user supplied low, middle, and high color values. |
contours | If contours=TRUE , contours are plotted, otherwise they are not shown. |
bar | If bar=TRUE , a calibration color bar is shown to the right of the image. |
overlay | A logical vector of spots to be highlighted on the image plots. |
ol.col | Color of the overlay spots. |
colorinfo | A logical value indicating whether the function should return the color scale information. |
list() | Optional graphical parameters, see par . |
Details
This function calls the general function maImage.func
,
which is not specific to microarray data. If there are more than one
array in the batch, the plot is done for the first array, by
default. Default color palettes were set for different types of spot
statistics using the maPalette
function. When
x=c("maM", "maMloc", "maMscale")
, a green-to-red color palette
is used. When x=c("maGb", "maGf", "maLG")
, a white-to-green
color palette is used. When x=c("maRb", "maRf", "maLR")
, a
white-to-red color palette is used. The user has the option to
overwrite these parameters at any point.
Value
If colorinfo
is set to TRUE, the following list with elements will be returned.
*
Seealso
maImage
, maImage.func
,
maColorBar
, maPalette
Author
Jean Yang and Sandrine Dudoit
References
S. Dudoit and Y. H. Yang. (2002). Bioconductor R packages for exploratory analysis and normalization of cDNA microarray data. In G. Parmigiani, E. S. Garrett, R. A. Irizarry and S. L. Zeger, editors, The Analysis of Gene Expression Data: Methods and Software , Springer, New York.
Examples
# Examples use swirl dataset, for description type ? swirl
data(swirl)
# Microarray color palettes
Gcol <- maPalette(low = "white", high = "green", k = 50)
Rcol <- maPalette(low = "white", high = "red", k = 50)
BYcol <- maPalette(low = "blue", mid="gray", high = "yellow", k = 50)
# Color images of green and red background and foreground intensities
##image(swirl[, 2], xvar ="maGb")
##image(swirl[, 2], xvar ="maGf", subset = TRUE, col = Gcol, contours = FALSE, bar = TRUE, main="Swirl array 93")
##image(swirl[, 1], xvar ="maRb", contour=TRUE)
##image(swirl[, 4], xvar ="maRf", bar=FALSE)
# Color images of pre-normalization intensity log-ratios
##image(swirl[, 1])
# Color images with overlay spots
##image(swirl[, 3], xvar = "maA", overlay = maTop(maA(swirl[, 3]), h = 0.1, l = 0.1), bar = TRUE, main = "Image of A values with % 10 tails highlighted")
# Color image of print-tip-group
##image(swirl[, 1],xvar = "maPrintTip")
ma2D()
Stratified bivariate robust local regression
Description
This function performs robust local regression of a variable z
on predictor variables x
and y
, separately within values of a fourth variable g
. It is used by maNorm2D
for 2D spatial location normalization.
Usage
ma2D(x, y, z, g, w=NULL, subset=TRUE, span=0.4, ...)
Arguments
Argument | Description |
---|---|
x | A numeric vector of predictor variables. |
y | A numeric vector of predictor variables. |
z | A numeric vector of responses. |
g | Variables used to stratify the data. |
w | An optional numeric vector of weights. |
subset | A "logical" or "numeric" vector indicating the subset of points used to compute the fits. |
span | The argument span which controls the degree of smoothing in the loess function. |
... | Misc arguments |
Details
z
is regressed on x
and y
, separately within values of g
using the loess
function.
Value
A numeric vector of fitted values.
Seealso
maNormMain
, maNorm2D
, loess
.
Author
Sandrine Dudoit, http://www.stat.berkeley.edu/~sandrine .
References
S. Dudoit and Y. H. Yang. (2002). Bioconductor R packages for exploratory analysis and normalization of cDNA microarray data. In G. Parmigiani, E. S. Garrett, R. A. Irizarry and S. L. Zeger, editors, The Analysis of Gene Expression Data: Methods and Software , Springer, New York.
Examples
# See examples for maNormMain.
maBoxplot()
Boxplots for cDNA microarray spot statistics
Description
The function maBoxplot
produces boxplots of microarray spot
statistics for the classes marrayRaw
and
marrayNorm
.We encourage users to use "boxplot" rather than "maBoxplot". The name of the arguments have changed.
Usage
maBoxplot(m, x="maPrintTip", y="maM", ...)
Arguments
Argument | Description |
---|---|
m | Microarray object of class " and " |
x | Name of accessor method for the spot statistic used to stratify the data, typically a slot name for the microarray layout object (see " ) such as maPlate or a method such as maPrintTip . If x is NULL, the data are not stratified. |
y | Name of accessor method for the spot statistic of interest, typically a slot name for the microarray object m , such as maM . |
list() | Optional graphical parameters, see par . |
Details
If there are more than one array in the batch, the function produces a boxplot for each array in the batch. Such plots are useful when assessing the need for between array normalization, for example, to deal with scale differences among different arrays. Default graphical parameters are chosen for convenience using the function maDefaultPar
(e.g. color palette, axis labels, plot title) but the user has the option to overwrite these parameters at any point.
Seealso
boxplot
, maDefaultPar
.
Author
Sandrine Dudoit, http://www.stat.berkeley.edu/~sandrine .
References
S. Dudoit and Y. H. Yang. (2002). Bioconductor R packages for exploratory analysis and normalization of cDNA microarray data. In G. Parmigiani, E. S. Garrett, R. A. Irizarry and S. L. Zeger, editors, The Analysis of Gene Expression Data: Methods and Software , Springer, New York.
Examples
## see example in boxplot
maColorBar()
Calibration bar for color images
Description
This function produces a color image (color bar) which can be used for
the legend to another color image obtained from the functions
image
, maImage
, or
maImage.func
.
Usage
maColorBar(x, horizontal=TRUE, col=heat.colors(50), scale=1:length(x), k=10, ...)
Arguments
Argument | Description |
---|---|
x | If "numeric", a vector containing the "z" values in the color image, i.e., the values which are represented in the color image. Otherwise, a "character" vector representing colors. |
horizontal | If TRUE , the values of x are represented as vertical color strips in the image, else, the values are represented as horizontal color strips. |
col | Vector of colors such as that generated by rainbow , heat.colors , topo.colors , terrain.colors , or similar functions. In addition to these color palette functions, a new function maPalette was defined to generate color palettes from user supplied low, middle, and high color values. |
scale | A "numeric" vector specifying the "z" values in the color image. This is used when the argument x is a "character" vector representing color information. |
k | Object of class "numeric", for the number of labels displayed on the bar. |
list() | Optional graphical parameters, see par . |
Seealso
image
, maImage
, maImage.func
, maPalette
.
Author
Sandrine Dudoit, http://www.stat.berkeley.edu/~sandrine , Yee Hwa (Jean) Yang.
References
S. Dudoit and Y. H. Yang. (2002). Bioconductor R packages for exploratory analysis and normalization of cDNA microarray data. In G. Parmigiani, E. S. Garrett, R. A. Irizarry and S. L. Zeger, editors, The Analysis of Gene Expression Data: Methods and Software , Springer, New York.
Examples
par(mfrow=c(3,1))
Rcol <- maPalette(low="white", high="red", k=10)
Gcol <- maPalette(low="white", high="green", k=50)
RGcol <- maPalette(low="green", high="red", k=100)
maColorBar(Rcol)
maColorBar(Gcol, scale=c(-5,5))
maColorBar(1:50, col=RGcol)
par(mfrow=c(1,3))
x<-seq(-1, 1, by=0.01)
maColorBar(x, col=Gcol, horizontal=FALSE, k=11)
maColorBar(x, col=Gcol, horizontal=FALSE, k=21)
maColorBar(x, col=Gcol, horizontal=FALSE, k=51)
maCompCoord()
Generate grid and spot matrix coordinates
Description
This function generates grid and spot matrix coordinates from ranges of rows and columns for the grid and spot matrices. Spots on the array are numbered consecutively starting from the top left grid and the top left spot within each grid.
Usage
maCompCoord(grows, gcols, srows, scols)
Arguments
Argument | Description |
---|---|
grows | numeric vector of grid rows. |
gcols | numeric vector of grid columns. |
srows | numeric vector of spot rows. |
scols | numeric vector of spot columns. |
Value
a matrix of spot four-coordinates, with rows corresponding to spots and columns to grid row, grid column, spot row, and spot column coordinates.
Seealso
marrayLayout
, maCoord2Ind
,
maInd2Coord
, maCompInd
.
Author
Yee Hwa (Jean) Yang, Sandrine Dudoit, http://www.stat.berkeley.edu/~sandrine .
Examples
maCompCoord(1:2,1,1:4,1:3)
maCompInd()
Generate spot indices
Description
This function generates spot indices from ranges of rows and columns for the grid and spot matrices. Spots on the array are numbered consecutively starting from the top left grid and the top left spot within each grid.
Usage
maCompInd(grows, gcols, srows, scols, L)
Arguments
Argument | Description |
---|---|
grows | numeric vector of grid rows. |
gcols | numeric vector of grid columns. |
srows | numeric vector of spot rows. |
scols | numeric vector of spot columns. |
L | object of class " . |
Value
a numeric vector of spot indices.
Seealso
marrayLayout
, maCoord2Ind
,
maInd2Coord
, maCompCoord
.
Author
Yee Hwa (Jean) Yang, Sandrine Dudoit, http://www.stat.berkeley.edu/~sandrine .
Examples
L <- new("marrayLayout", maNgr=4, maNgc=4, maNsr=22, maNsc=24)
maCompInd(1:2,1,1:4,1:3,L)
maCompLayout()
Generate a marrayLayout object
Description
Take a matrix of cooordiates and generate a marrayLayout object.
Usage
maCompLayout(mat, ncolumns = 4)
Arguments
Argument | Description |
---|---|
mat | a matrix of coordinates, this can either be n by 3 matrix with columns (Block, Row, Column) or n by 4 matrix with columns (Grid.R, Grid.C, Spot.R, Spot.C) |
ncolumns | For n by 3 matrix, the number of meta-grid columns. By default, it is set to 4. |
Value
An object of class "
.
Author
Jean Yang
Examples
X <- cbind(Block = c(1,1,2,2,3,3,4,4), Rows=c(1,2,1,2,1,2,1,2), Columns=rep(1,8))
maCompLayout(X, ncolumns=2)
maCompNormA()
Weights for composite normalization
Description
This function is used for composite normalization with intensity dependent weights. The function should be used as an argument to the main normalization function maNormMain
. It only applies when two normalization procedures are combined.
Usage
maCompNormA()
maCompNormEq()
Value
A function which takes as arguments x
and n
, the spot average log-intensities A and the number of normalization procedures. This latter function returns a matrix of weights for combining two normalization procedures, rows correspond to spots and columns to normalization procedures. The weights for the first procedure are given by the empirical cumulative distribution function of the spot average log-intensities A. Note that when performing composite normalization as described in Yang et al. (2002), the first normalization procedure is the global fit and the second procedure is the within-print-tip-group fit. list() list()
For maCompEq
, equal weights are given for each procedure.
Seealso
maNormMain
, maNormLoess
, ecdf
.
Author
Sandrine Dudoit, http://www.stat.berkeley.edu/~sandrine , Yee Hwa (Jean) Yang.
References
S. Dudoit and Y. H. Yang. (2002). Bioconductor R packages for exploratory analysis and normalization of cDNA microarray data. In G. Parmigiani, E. S. Garrett, R. A. Irizarry and S. L. Zeger, editors, list("The Analysis of Gene Expression Data: Methods and Software") , Springer, New York. list() list()
Y. H. Yang, S. Dudoit, P. Luu, D. M. Lin, V. Peng, J. Ngai, and T. P. Speed (2002). Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation. list("Nucleic Acids Research") , Vol. 30, No. 4.
Examples
# See examples for maNormMain
maCompPlate()
Generate plate IDs
Description
This function generates plate IDs from the dimensions of the grid and spot matrices. Note that this function only applies to arrays with a regular plate layout, where the number of spots is a multiple of the number of wells on a plate (usually 96 or 384) and each well contributes exactly one spot. It should thus be used with caution.
Usage
maCompPlate(x, n=384)
Arguments
Argument | Description |
---|---|
x | object of class " , " and " |
n | object of class "numeric", number of wells in each plate, usually 384 or 96. |
Details
Having plate IDs may be useful for the purpose of
normalization. Normalization by plate can be done using the function
maNormMain
.
Value
a vector of plate IDs ( factor
).
Seealso
marrayLayout
, marrayRaw
,
marrayNorm
Author
Yee Hwa (Jean) Yang, Sandrine Dudoit, http://www.stat.berkeley.edu/~sandrine .
Examples
L<-new("marrayLayout", maNgr=4, maNgc=4, maNsr=22, maNsc=24)
plate<-maCompPlate(L,384)
table(plate)
maPlate(L)<-plate
maCoord2Ind()
Convert grid and spot matrix coordinates to spot indices
Description
This functions converts grid and spot matrix coordinates (four coordinates) to spot indices, where spots on the array are numbered consecutively starting from the top left grid and the top left spot within each grid.
Usage
maCoord2Ind(x, L)
Arguments
Argument | Description |
---|---|
x | a matrix of spot four-coordinates, with rows corresponding to spots and columns to grid row, grid column, spot row, and spot column coordinates. |
L | an object of class " . |
Value
a numeric vector of spot indices.
Seealso
marrayLayout
, maInd2Coord
,
maCompCoord
, maCompInd
.
Author
Yee Hwa (Jean) Yang, Sandrine Dudoit, http://www.stat.berkeley.edu/~sandrine .
Examples
L <- new("marrayLayout", maNgr=4, maNgc=4, maNsr=22, maNsc=24)
coord<-cbind(rep(2,4),rep(1,4),rep(1,4),1:4)
maCoord2Ind(coord, L)
maDefaultPar()
Default graphical parameters for microarray objects
Description
This function returns default graphical parameters for microarray objects. The parameters may be passed as arguments to the functions maBoxplot
and maPlot
.
Usage
maDefaultPar(m, x, y, z)
Arguments
Argument | Description |
---|---|
m | Microarray object of class " and " . |
x | Name of accessor method for the abscissa spot statistic, typically a slot name for the microarray object m , such as maA . |
y | Name of accessor method for the ordinate spot statistic, typically a slot name for the microarray object m , such as maM . |
z | Name of accessor method for the spot statistic used to stratify the data, typically a slot name for the microarray layout object (see " ) such as maPlate or a method such as maPrintTip . |
Value
A list with elements
*
Seealso
maBoxplot
, maPlot
,
maLegendLines
, maLoessLines
,
maText
, maDotsDefaults
.
Author
Sandrine Dudoit, http://www.stat.berkeley.edu/~sandrine .
References
S. Dudoit and Y. H. Yang. (2002). Bioconductor R packages for exploratory analysis and normalization of cDNA microarray data. In G. Parmigiani, E. S. Garrett, R. A. Irizarry and S. L. Zeger, editors, The Analysis of Gene Expression Data: Methods and Software , Springer, New York.
Examples
# See examples for maPlot.
maDotsDefaults()
Replace graphical default parameters by user supplied parameters
Description
This function may be used to compare default graphical parameters for microarray diagnostic plots to user supplied parameters given in ...
. User supplied parameters overwrite the defaults. It is used in maBoxplot
, maPlot
, and maImage
.
Usage
maDotsDefaults(dots, defaults)
Arguments
Argument | Description |
---|---|
dots | List of user supplied parameters, e.g. from list(...) . |
defaults | List of default parameters, e.g. from the function maDefaultPar . |
Value
*
Seealso
maDefaultPar
, maBoxplot
, maPlot
, maImage
.
Author
Sandrine Dudoit, http://www.stat.berkeley.edu/~sandrine .
References
S. Dudoit and Y. H. Yang. (2002). Bioconductor R packages for exploratory analysis and normalization of cDNA microarray data. In G. Parmigiani, E. S. Garrett, R. A. Irizarry and S. L. Zeger, editors, The Analysis of Gene Expression Data: Methods and Software , Springer, New York.
Examples
dots<-list(xlab="X1", ylab="Y1")
defaults<-list(xlab="X1", ylab="Y2", col=2)
pars<-maDotsDefaults(dots, defaults)
do.call("plot",c(list(x=1:10), pars))
maDotsMatch()
Replace default arguments of a function by user supplied values
Description
This function may be used to replace default arguements for any functions to user supplied parameters.
Usage
maDotsMatch(dots, defaults)
Arguments
Argument | Description |
---|---|
dots | List of user supplied argements, e.g. from list(...) . |
defaults | List of formal arguments of a function, e.g. from the function formals . |
Value
*
Seealso
Author
Jean Yee Hwa Yang
Examples
dots<-list(x=1:10, y=11:20)
argsfun <- maDotsMatch(dots, formals(args(plot)))
do.call("plot", argsfun)
maGenControls()
Generating a vector recording the control status of the spotted probe sequences.
Description
ControlCode is a matrix representing certain regular expression
pattern and the control status of the spotted probe sequences.
This function uses grep' searches for matches to
pattern' (its first argument)
within the character vector x' (second argument). ## Usage ```r maGenControls(Gnames, controlcode, id = "ID") ``` ## Arguments |Argument |Description| |------------- |----------------| |
Gnames| An object of class
matrix,
data.frameor
marrayInfowhich contains description of spotted probe sequences.| |
controlcode| A character matrix of n by 2 columns. The first column contains a few regular expression of spotted probe sequences and the second column contains the corresponding control status.| |
id| the column number of column name in
Gnamesthat contains description of each spot on the array.| ## Value A vector of characters recording the control status of the spotted probe sequences. ## Seealso [
grep`](#grep)
## Author
Jean Yee Hwa Yang
## Examples
r data(swirl) maControls(swirl) <- maGenControls(maGnames(swirl), id="Name") table(maControls(swirl))
maGeneTable()
Table of spot coordinates and gene names
Description
This function produces a table of spot coordinates and gene names for
objects of class "
and
"
.
Usage
maGeneTable(object)
Arguments
Argument | Description |
---|---|
object | microarray object of class " and " . |
Value
an object of class data.frame
, with rows corresponding
to spotted probe sequences. The first four columns are the grid matrix
and spot matrix coordinates, and the remaining columns are the spot
descriptions stored in the maGnames
slot of the microarray
object.
Seealso
marrayInfo
, marrayLayout
, marrayRaw
, marrayNorm
, maCompCoord
.
Author
Yee Hwa (Jean) Yang
Examples
# Example uses swirl dataset, for description type ? swirl
data(swirl)
tab<-maGeneTable(swirl)
tab[1:10,]
maImage()
Color image for cDNA microarray spot statistics
Description
We encourage users calling "image" rather than "maImage". The name of the arguments are change slightly.
The function maImage
creates spatial images of shades of gray or colors that correspond to the values of a statistic for each spot on the array. The statistic can be the intensity log-ratio M, a spot quality measure (e.g. spot size or shape), or a test statistic. This function can be used to explore whether there are any spatial effects in the data, for example, print-tip or cover-slip effects.
Usage
maImage(m, x="maM", subset=TRUE, col, contours=FALSE, bar=TRUE,
overlay=NULL, ol.col=1, colorinfo=FALSE, ...)
Arguments
Argument | Description |
---|---|
m | Microarray object of class " and " . |
x | Name of accessor function for the spot statistic of interest, typically a slot name for the microarray object m , such as maM . |
subset | A "logical" or "numeric" vector indicating the subset of spots to display on the image. |
col | List of colors such as that generated by rainbow, heat.colors, topo.colors, terrain.colors, or similar functions. In addition to these color palette functions, a new function maPalette was defined to generate color palettes from user supplied low, middle, and high color values. |
contours | If contours=TRUE , contours are plotted, otherwise they are not shown. |
bar | If bar=TRUE , a calibration color bar is shown to the right of the image. |
overlay | A logical vector of spots to be highlighted on the image plots. |
ol.col | Color of the overlay spots. |
colorinfo | A logical value indicating whether the function should return the color scale information. |
list() | Optional graphical parameters, see par . |
Details
This function calls the general function maImage.func
, which is not specific to microarray data. If there are more than one array in the batch, the plot is done for the first array, by default. Default color palettes were set for different types of spot statistics using the maPalette
function. When x=c("maM", "maMloc", "maMscale")
, a green-to-red color palette is used. When x=c("maGb", "maGf", "maLG")
, a white-to-green color palette is used. When x=c("maRb", "maRf", "maLR")
, a white-to-red color palette is used. The user has the option to overwrite these parameters at any point.
Value
If colorinfo
is set to TRUE, the following list with elements will be returned.
*
Seealso
image
, maImage.func
, maColorBar
, maPalette
, summary
.
Author
Sandrine Dudoit, http://www.stat.berkeley.edu/~sandrine .
References
S. Dudoit and Y. H. Yang. (2002). Bioconductor R packages for exploratory analysis and normalization of cDNA microarray data. In G. Parmigiani, E. S. Garrett, R. A. Irizarry and S. L. Zeger, editors, The Analysis of Gene Expression Data: Methods and Software , Springer, New York.
Examples
# To see the demo type demo(marrayPlots)
# Examples use swirl dataset, for description type ? swirl
data(swirl)
# Microarray color palettes
Gcol <- maPalette(low = "white", high = "green", k = 50)
Rcol <- maPalette(low = "white", high = "red", k = 50)
RGcol <- maPalette(low = "green", high = "red", k = 50)
# Color images of green and red background and foreground intensities
maImage(swirl[, 3], x="maGb")
maImage(swirl[, 3], x = "maGf", subset = TRUE, col = Gcol, contours = FALSE, bar = TRUE, main="Swirl array 93")
maImage(swirl[, 3], x = "maRb", contour=TRUE)
maImage(swirl[, 3], x = "maRf", bar=FALSE)
# Color images of pre-normalization intensity log-ratios
maImage(swirl[, 1])
maImage(swirl[, 3], x = "maM", subset = maTop(maM(swirl[, 3]), h = 0.1, l = 0.1), col = RGcol, contours = FALSE, bar = TRUE, main = "Swirl array 93: image of pre-normalization M for % 10 tails")
# Color image of print-tip-group
maImage(swirl[, 1],x="maPrintTip")
maImagefunc()
Color image for cDNA microarray spot statistics
Description
This function creates spatial images of shades of gray or colors that correspond to the values of a statistic for each spot on the array. The statistic can be the intensity log-ratio M, a spot quality measure (e.g. spot size or shape), or a test statistic. This function can be used to explore whether there are any spatial effects in the data, for example, print-tip or cover-slip effects. This function is called by maImage
.
Usage
maImage.func(x, L, subset=TRUE, col=heat.colors(12), contours=FALSE, overlay=NULL, ol.col=1, ...)
Arguments
Argument | Description |
---|---|
x | A "numeric" vector of spot statistics. |
L | An object of class " , if L is missing we will assume the dimension of x. |
subset | A "logical" or "numeric" vector indicating the subset of spots to display on the image. |
col | A list of colors such as that generated by rainbow, heat.colors, topo.colors, terrain.colors, or similar functions. In addition to these color palette functions, a new function maPalette was defined to generate color palettes from user supplied low, middle, and high color values. |
contours | If contours=TRUE , contours are plotted, otherwise they are not shown. |
overlay | A logical vector of spots to be highlighted on the image plots. |
ol.col | Color of the overlay spots. |
list() | Optional graphical parameters, see par . |
Seealso
image
, maImage
, maColorBar
, maPalette
.
Author
Sandrine Dudoit, http://www.stat.berkeley.edu/~sandrine .
References
S. Dudoit and Y. H. Yang. (2002). Bioconductor R packages for exploratory analysis and normalization of cDNA microarray data. In G. Parmigiani, E. S. Garrett, R. A. Irizarry and S. L. Zeger, editors, The Analysis of Gene Expression Data: Methods and Software , Springer, New York.
Examples
# See examples for image.
maInd2Coord()
Convert spot indices to grid and spot matrix coordinates
Description
This functions converts spot indices to grid and spot matrix coordinates (four coordinates), where spots on the array are numbered consecutively starting from the top left grid and the top left spot within each grid.
Usage
maInd2Coord(x, L)
Arguments
Argument | Description |
---|---|
x | a numeric vector of spot indices. |
L | an object of class " . |
Value
a matrix of spot four-coordinates, with rows corresponding to spots and columns to grid row, grid column, spot row, and spot column coordinates.
Seealso
marrayLayout
, maCoord2Ind
,
maCompCoord
, maCompInd
.
Author
Yee Hwa (Jean) Yang, Sandrine Dudoit, http://www.stat.berkeley.edu/~sandrine .
Examples
L <- new("marrayLayout", maNgr=4, maNgc=4, maNsr=22, maNsc=24)
maInd2Coord(c(1:10,529:538), L)
maLegendLines()
Add a legend to a plot
Description
This function may be used to add a legend for lines in plots such as those produced by plot
, maPlot
, or maPlot.func
.
Usage
maLegendLines(legend="", col=2, lty=1, lwd=2.5, ncol=1, ...)
Arguments
Argument | Description |
---|---|
legend | A vector of "character" strings to appear in the legend. |
col | Line colors for the legend. |
lty | Line types for the legend. |
lwd | Line widths for the legend. |
ncol | The number of columns in which to set the legend items (default is 1, a vertical legend). |
list() | Optional graphical parameters, see par . |
Value
A function with bindings for legend
, col
, lty
, lwd
, ncol
, and list() . This latter function takes as arguments x
and y
, the coordinates for the location of the legend on the plot, and it adds the legend to the current plot.
Seealso
legend
, maPlot
, maPlot.func
.
Author
Sandrine Dudoit, http://www.stat.berkeley.edu/~sandrine .
References
S. Dudoit and Y. H. Yang. (2002). Bioconductor R packages for exploratory analysis and normalization of cDNA microarray data. In G. Parmigiani, E. S. Garrett, R. A. Irizarry and S. L. Zeger, editors, The Analysis of Gene Expression Data: Methods and Software , Springer, New York.
Examples
# See examples for maPlot.
maLoess()
Stratified univariate robust local regression
Description
This function performs robust local regression of a variable y
on predictor variable x
, separately within values of a third variable z
. It is used by maNormLoess
for intensity dependent location normalization.
Usage
maLoess(x, y, z, w=NULL, subset=TRUE, span=0.4, list())
Arguments
Argument | Description |
---|---|
x | A numeric vector of predictor variables. |
y | A numeric vector of responses. |
z | Variables used to stratify the data. |
w | An optional numeric vector of weights. |
subset | A "logical" or "numeric" vector indicating the subset of points used to compute the fits. |
span | The argument span which controls the degree of smoothing in the loess function. |
list() | Misc arguments. |
Details
y
is regressed on x
, separately within values of z
using the loess
function.
Value
A numeric vector of fitted values.
Seealso
maNormMain
, maNormLoess
, loess
.
Author
Sandrine Dudoit, http://www.stat.berkeley.edu/~sandrine .
References
S. Dudoit and Y. H. Yang. (2002). Bioconductor R packages for exploratory analysis and normalization of cDNA microarray data. In G. Parmigiani, E. S. Garrett, R. A. Irizarry and S. L. Zeger, editors, list("The Analysis of Gene Expression Data: Methods and Software") , Springer, New York. list() list()
Y. H. Yang, S. Dudoit, P. Luu, and T. P. Speed (2001). Normalization for cDNA microarray data. In M. L. Bittner, Y. Chen, A. N. Dorsel, and E. R. Dougherty (eds), list("Microarrays: Optical Technologies and Informatics") , Vol. 4266 of list("Proceedings of SPIE") . list() list()
Y. H. Yang, S. Dudoit, P. Luu, D. M. Lin, V. Peng, J. Ngai, and T. P. Speed (2002). Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation. list("Nucleic Acids Research") , Vol. 30, No. 4.
Examples
# See examples for maNormMain.
maLoessLines()
Add smoothed fits to a plot
Description
This function may be used to compute and plot loess or lowess fits for an existing plot. The plot can be produced by plot
, maPlot
, or maPlot.func
.
Usage
maLoessLines(subset=TRUE, weights=NULL, loess.args=list(span = 0.4,
degree=1, family="symmetric", control=loess.control(trace.hat =
"approximate", iterations=5, surface="direct")), col=2, lty=1, lwd=2.5, ...)
maLowessLines(subset = TRUE, f = 0.3, col = 2, lty = 1, lwd = 2.5, ...)
Arguments
Argument | Description |
---|---|
subset | A "logical" or "numeric" vector indicating the subset of points used to compute the fits. |
weights | Optional "numeric" vector of weights -- for maLoessLines only. |
loess.args | List of optional arguments for the loess functions -- for maLoessLines only. |
f | The smoother span for the lowess function -- for maLowessLines only. |
col | The fitted line colors. |
lty | The fitted line types. |
lwd | The fitted line widths. |
list() | Optional graphical parameters, see par . |
Value
A function with bindings for subset
, weights
, loess.args
, col
, lty
, lwd
, and list() . This latter function takes as arguments x
and y
, the abscissa and ordinates of points on the plot, and z
a vector of discrete values used to stratify the points. Loess (or lowess) fits are performed separately within values of z
.
Seealso
loess
, lowess
, maPlot
, maPlot.func
.
Author
Sandrine Dudoit, http://www.stat.berkeley.edu/~sandrine .
References
S. Dudoit and Y. H. Yang. (2002). Bioconductor R packages for exploratory analysis and normalization of cDNA microarray data. In G. Parmigiani, E. S. Garrett, R. A. Irizarry and S. L. Zeger, editors, The Analysis of Gene Expression Data: Methods and Software , Springer, New York.
Examples
# See examples for maPlot.
maMAD()
Stratified MAD calculation
Description
This function computes the median absolute deviation (MAD) of values in y
separately within values of x
. It is used by maNormMAD
for MAD scale normalization.
Usage
maMAD(x, y, geo=TRUE, subset=TRUE)
Arguments
Argument | Description |
---|---|
x | Variables used to stratify the data. |
y | A numeric vector. |
geo | If TRUE , the MAD of each group is divided by the geometric mean of the MADs across groups (cf. Yang et al. (2002)). This allows observations to retain their original units. |
subset | A "logical" or "numeric" vector indicating the subset of points used to compute the MAD. |
Value
A numeric vector of MAD values.
Seealso
maNormMain
, maNormMAD
, mad
.
Author
Sandrine Dudoit, http://www.stat.berkeley.edu/~sandrine .
References
S. Dudoit and Y. H. Yang. (2002). Bioconductor R packages for exploratory analysis and normalization of cDNA microarray data. In G. Parmigiani, E. S. Garrett, R. A. Irizarry and S. L. Zeger, editors, list("The Analysis of Gene Expression Data: Methods and Software") , Springer, New York. list() list()
Y. H. Yang, S. Dudoit, P. Luu, and T. P. Speed (2001). Normalization for cDNA microarray data. In M. L. Bittner, Y. Chen, A. N. Dorsel, and E. R. Dougherty (eds), list("Microarrays: Optical Technologies and Informatics") , Vol. 4266 of list("Proceedings of SPIE") . list() list()
Y. H. Yang, S. Dudoit, P. Luu, D. M. Lin, V. Peng, J. Ngai, and T. P. Speed (2002). Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation. list("Nucleic Acids Research") , Vol. 30, No. 4.
Examples
# See examples for maNormMain.
maMed()
Stratified median calculation
Description
This function computes the median of values in y
separately within values of x
. It is used by maNormMed
for median location normalization.
Usage
maMed(x, y, subset=TRUE)
Arguments
Argument | Description |
---|---|
x | Variables used to stratify the data. |
y | A numeric vector. |
subset | A "logical" or "numeric" vector indicating the subset of points used to compute the median. |
Value
A numeric vector of median values.
Seealso
maNormMain
, maNormMed
, median
.
Author
Sandrine Dudoit, http://www.stat.berkeley.edu/~sandrine .
References
S. Dudoit and Y. H. Yang. (2002). Bioconductor R packages for exploratory analysis and normalization of cDNA microarray data. In G. Parmigiani, E. S. Garrett, R. A. Irizarry and S. L. Zeger, editors, list("The Analysis of Gene Expression Data: Methods and Software") , Springer, New York. list() list()
Y. H. Yang, S. Dudoit, P. Luu, and T. P. Speed (2001). Normalization for cDNA microarray data. In M. L. Bittner, Y. Chen, A. N. Dorsel, and E. R. Dougherty (eds), list("Microarrays: Optical Technologies and Informatics") , Vol. 4266 of list("Proceedings of SPIE") . list() list()
Y. H. Yang, S. Dudoit, P. Luu, D. M. Lin, V. Peng, J. Ngai, and T. P. Speed (2002). Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation. list("Nucleic Acids Research") , Vol. 30, No. 4.
Examples
# See examples for maNormMain.
maNA()
Basic Statistical Functions for Handling Missing Values
Description
Basic statistical functions for handling missing values or NA. list()
In log.na
, sum.na
, mean.na
and var.na
,
quantile.na
, length.na
, missing values are omitted
from the calculation. list()
The function cor.na
calls cor
with the argument
use="pairwise.complete.obs"
. list()
The function order.na
only handles vector arguments and not
lists. However, it gives the option of omitting the NAs
( na.last=NA
), of placing the NAs at the start of the ordered
vector ( na.last=F
) or at the end ( na.last=T
). list()
The function scale.na
is a modified version of
scale
which allows NAs in the variance calculation. If
scale = T
, the function f
in scale.na
uses
var.na
to perform the variance calculation.
The function prod.na
is similar to the prod
function with na.rm=TRUE
. This function returns the product of
all the values present in its arguments, omitting any missing values.
Seealso
log
, sum
, mean
,
var
, cor
, order
,
scale
, prod
.
Author
Yee Hwa Yang, list("jean@biostat.berkeley.edu") list()
maNorm()
Simple location and scale normalization function
Description
This function is a simple wrapper function around the main normalization function maNormMain
. It allows the user to choose from a set of six basic location and scale normalization procedures. The function operates on an object of class "
(or possibly "
, if normalization is performed in several steps) and returns an object of class "
.
Usage
maNorm(mbatch, norm=c("printTipLoess", "none", "median", "loess",
"twoD", "scalePrintTipMAD"), subset=TRUE, span=0.4, Mloc=TRUE,
Mscale=TRUE, echo=FALSE, ...)
Arguments
Argument | Description |
---|---|
mbatch | Object of class marrayRaw , containing intensity data for the batch of arrays to be normalized. An object of class " may also be passed if normalization is performed in several steps. |
|norm
| Character string specifying the normalization procedures: list("
", list(list("none"), list("no normalization")), "
", list(list("median"), list("for global median location normalization")), "
", list(list("loess"), list("for global intensity or A-dependent location normalization using
", "the ", list(list("loess")), " function")), "
", list(list("twoD"), list("for 2D spatial location normalization using the
", list(list("loess")), " function")), "
", list(list("printTipLoess"), list("for within-print-tip-group intensity dependent location
", |
"normalization using the ", list(list("loess")), " function")), "
", list(list("scalePrintTipMAD"), list("for within-print-tip-group intensity dependent
", "location normalization followed by within-print-tip-group scale normalization
", "using the median absolute deviation (MAD). ", list(), "
")), "
", "This argument can be specified using the first letter of each method.")
|subset
| A "logical" or "numeric" vector indicating the subset of points used to compute the normalization values.|
|span
| The argument span
which controls the degree of smoothing in the loess
function.|
|Mloc
| If TRUE
, the location normalization values are stored in the slot maMloc
of the object of class "
returned by the function, if FALSE
, these values are not retained.|
|Mscale
| If TRUE
, the scale normalization values are stored in the slot maMscale
of the object of class "
returned by the function, if FALSE
, these values are not retained.|
|echo
| If TRUE
, the index of the array currently being normalized is printed.|
|...
| Misc arguments|
Details
See maNormMain
for details and also more general procedures.
Value
*
Seealso
Author
Sandrine Dudoit, http://www.stat.berkeley.edu/~sandrine .
References
S. Dudoit and Y. H. Yang. (2002). Bioconductor R packages for exploratory analysis and normalization of cDNA microarray data. In G. Parmigiani, E. S. Garrett, R. A. Irizarry and S. L. Zeger, editors, list("The Analysis of Gene Expression Data: Methods and Software") , Springer, New York. list() list()
Y. H. Yang, S. Dudoit, P. Luu, and T. P. Speed (2001). Normalization for cDNA microarray data. In M. L. Bittner, Y. Chen, A. N. Dorsel, and E. R. Dougherty (eds), list("Microarrays: Optical Technologies and Informatics") , Vol. 4266 of list("Proceedings of SPIE") . list() list()
Y. H. Yang, S. Dudoit, P. Luu, D. M. Lin, V. Peng, J. Ngai, and T. P. Speed (2002). Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation. list("Nucleic Acids Research") , Vol. 30, No. 4.
Examples
# Examples use swirl dataset, for description type ? swirl
data(swirl)
# Global median normalization for swirl arrays 2 and 3
mnorm<-maNorm(swirl[,2:3], norm="median", echo=TRUE)
# Within-print-tip-group loess location normalization for swirl array 1
mnorm<-maNorm(swirl[,1], norm="p", span=0.45)
maNorm2D()
2D spatial location normalization function
Description
This function is used for 2D spatial location normalization, using the robust local regression function loess
. It should be used as an argument to the main normalization function maNormMain
.
Usage
maNorm2D(x="maSpotRow", y="maSpotCol", z="maM", g="maPrintTip", w=NULL,
subset=TRUE, span=0.4, ...)
Arguments
Argument | Description |
---|---|
x | Name of accessor method for spot row coordinates, usually maSpotRow . |
y | Name of accessor method for spot column coordinates, usually maSpotCol . |
z | Name of accessor method for spot statistics, usually the log-ratio maM . |
g | Name of accessor method for print-tip-group indices, usually maPrintTip . |
w | An optional numeric vector of weights. |
subset | A "logical" or "numeric" vector indicating the subset of points used to compute the fits. |
span | The argument span which controls the degree of smoothing in the loess function. |
... | Misc arguments |
Details
The spot statistic named in z
is regressed on spot row and column coordinates, separately within print-tip-group, using the loess
function.
Value
A function with bindings for the above arguments. This latter function takes as argument an object of class "
(or possibly "
), and returns a vector of fitted values to be substracted from the raw log-ratios. It calls the function ma2D
, which is not specific to microarray objects.
Seealso
maNormMain
, ma2D
, loess
.
Author
Sandrine Dudoit, http://www.stat.berkeley.edu/~sandrine .
References
S. Dudoit and Y. H. Yang. (2002). Bioconductor R packages for exploratory analysis and normalization of cDNA microarray data. In G. Parmigiani, E. S. Garrett, R. A. Irizarry and S. L. Zeger, editors, The Analysis of Gene Expression Data: Methods and Software , Springer, New York.
Examples
# See examples for maNormMain.
maNormLoess()
Intensity dependent location normalization function
Description
This function is used for intensity dependent location normalization, using the robust local regression function loess
. It should be used as an argument to the main normalization function maNormMain
.
Usage
maNormLoess(x="maA", y="maM", z="maPrintTip", w=NULL, subset=TRUE,
span=0.4, ...)
Arguments
Argument | Description |
---|---|
x | Name of accessor method for spot statistics, usually maA . |
y | Name of accessor method for spot statistics, usually maM . |
z | Name of accessor method for spot statistic used to stratify the data, usually a layout parameter, e.g. maPrintTip or maPlate . If z is not a character, e.g. NULL, the data are not stratified. |
w | An optional numeric vector of weights. |
subset | A "logical" or "numeric" vector indicating the subset of points used to compute the fits. |
span | The argument span which controls the degree of smoothing in the loess function. |
... | Misc arguments |
Value
A function with bindings for the above arguments. This latter function takes as argument an object of class "
(or possibly "
), and returns a vector of fitted values to be substracted from the raw log-ratios. It calls the function maLoess
, which is not specific to microarray objects.
Seealso
maNormMain
, maLoess
, loess
.
Author
Sandrine Dudoit, http://www.stat.berkeley.edu/~sandrine .
References
S. Dudoit and Y. H. Yang. (2002). Bioconductor R packages for exploratory analysis and normalization of cDNA microarray data. In G. Parmigiani, E. S. Garrett, R. A. Irizarry and S. L. Zeger, editors, list("The Analysis of Gene Expression Data: Methods and Software") , Springer, New York. list() list()
Y. H. Yang, S. Dudoit, P. Luu, and T. P. Speed (2001). Normalization for cDNA microarray data. In M. L. Bittner, Y. Chen, A. N. Dorsel, and E. R. Dougherty (eds), list("Microarrays: Optical Technologies and Informatics") , Vol. 4266 of list("Proceedings of SPIE") . list() list()
Y. H. Yang, S. Dudoit, P. Luu, D. M. Lin, V. Peng, J. Ngai, and T. P. Speed (2002). Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation. list("Nucleic Acids Research") , Vol. 30, No. 4.
Examples
# See examples for maNormMain.
maNormMAD()
MAD scale normalization function
Description
This function is used for scale normalization using the median absolute deviation (MAD) of intensity log-ratios for a group of spots. It can be used for within or between array normalization. The function should be used as an argument to the main normalization function maNormMain
.
Usage
maNormMAD(x=NULL, y="maM", geo=TRUE, subset=TRUE)
Arguments
Argument | Description |
---|---|
x | Name of accessor function for spot statistic used to stratify the data, usually a layout parameter, e.g. maPrintTip or maPlate . If x is not a character, e.g. NULL, the data are not stratified. |
y | Name of accessor function for spot statistics, usually maM . |
geo | If TRUE , the MAD of each group is divided by the geometric mean of the MADs across groups (cf. Yang et al. (2002)). This allows observations to retain their original units. |
subset | A "logical" or "numeric" vector indicating the subset of points used to compute the scale normalization values. |
Value
A function with bindings for the above arguments. This latter function takes as argument an object of class "
(or possibly "
), and returns a vector of values used to scale the location normalized log-ratios. It calls the function maMAD
, which is not specific to microarray objects.
Seealso
maNormMain
, maMAD
, mad
.
Author
Sandrine Dudoit, http://www.stat.berkeley.edu/~sandrine .
References
S. Dudoit and Y. H. Yang. (2002). Bioconductor R packages for exploratory analysis and normalization of cDNA microarray data. In G. Parmigiani, E. S. Garrett, R. A. Irizarry and S. L. Zeger, editors, list("The Analysis of Gene Expression Data: Methods and Software") , Springer, New York. list() list()
Y. H. Yang, S. Dudoit, P. Luu, and T. P. Speed (2001). Normalization for cDNA microarray data. In M. L. Bittner, Y. Chen, A. N. Dorsel, and E. R. Dougherty (eds), list("Microarrays: Optical Technologies and Informatics") , Vol. 4266 of list("Proceedings of SPIE") . list() list()
Y. H. Yang, S. Dudoit, P. Luu, D. M. Lin, V. Peng, J. Ngai, and T. P. Speed (2002). Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation. list("Nucleic Acids Research") , Vol. 30, No. 4.
Examples
# See examples for maNormMain.
maNormMain()
Main function for location and scale normalization of cDNA microarray data
Description
This is the main function for location and scale normalization of cDNA microarray data. Normalization is performed for a batch of arrays using location and scale normalization procedures specified by the lists of functions f.loc
and f.scale
. Typically, only one function is given in each list, otherwise composite normalization is performed using the weights computed by the functions a.loc
and a.scale
. The function operates on an object of class "
(or possibly "
, if normalization is performed in several steps) and returns an object of class "
. Simple wrapper functions are provided by maNorm
and maNormScale
.
Usage
maNormMain(mbatch, f.loc=list(maNormLoess()), f.scale=NULL,
a.loc=maCompNormEq(), a.scale=maCompNormEq(), Mloc=TRUE, Mscale=TRUE, echo=FALSE)
Arguments
Argument | Description |
---|---|
mbatch | An object of class " , containing intensity data for the batch of arrays to be normalized. An object of class " may also be passed if normalization is performed in several steps. |
f.loc | A list of location normalization functions, e.g., maNormLoess , maNormMed , or maNorm2D . |
f.scale | A list of scale normalization functions, .e.g, maNormMAD . |
a.loc | For composite normalization, a function for computing the weights used in combining several location normalization functions, e.g., maCompNormA . |
a.scale | For composite normalization, a function for computing the weights used in combining several scale normalization functions. |
Mloc | If TRUE , the location normalization values are stored in the slot maMloc of the object of class " returned by the function, if FALSE , these values are not retained. |
Mscale | If TRUE , the scale normalization values are stored in the slot maMscale of the object of class " returned by the function, if FALSE , these values are not retained. |
echo | If TRUE , the index of the array currently being normalized is printed. |
Details
When both location and scale normalization functions ( f.loc
and f.scale
) are passed, location normalization is performed before scale normalization. That is, scale values are computed for the location normalized log-rations. The same results could be obtained by two applications of the function maNormMain
, first with only the location normalization function and f.scale=NULL
, and second with only the scale normalization function and f.loc=NULL
.
Value
*
Seealso
maNorm
, maNormScale
, maNormLoess
, maLoess
,
maNormMAD
, maMAD
,
maNormMed
, maMed
,
maNorm2D
, ma2D
,
maCompNormA
, maCompNormEq
.
Author
Sandrine Dudoit, http://www.stat.berkeley.edu/~sandrine .
References
S. Dudoit and Y. H. Yang. (2002). Bioconductor R packages for exploratory analysis and normalization of cDNA microarray data. In G. Parmigiani, E. S. Garrett, R. A. Irizarry and S. L. Zeger, editors, list("The Analysis of Gene Expression Data: Methods and Software") , Springer, New York. list() list()
Y. H. Yang, S. Dudoit, P. Luu, and T. P. Speed (2001). Normalization for cDNA microarray data. In M. L. Bittner, Y. Chen, A. N. Dorsel, and E. R. Dougherty (eds), list("Microarrays: Optical Technologies and Informatics") , Vol. 4266 of list("Proceedings of SPIE") . list() list()
Y. H. Yang, S. Dudoit, P. Luu, D. M. Lin, V. Peng, J. Ngai, and T. P. Speed (2002). Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation. list("Nucleic Acids Research") , Vol. 30, No. 4.
Examples
# Examples use swirl dataset, for description type ? swirl
data(swirl)
# Within-print-tip-group loess location normalization of batch swirl
# - Default normalization
swirl.norm<-maNormMain(swirl)
boxplot(swirl.norm)
boxplot(swirl.norm[,3])
plot(swirl.norm[,3])
# Global median normalization for arrays 81 and 82
swirl.norm <- maNormMain(swirl[,1:2], f.loc = list(maNormMed(x=NULL,y="maM")))
# Global loess normalization for array 81
swirl.norm <- maNormMain(swirl[,1], f.loc = list(maNormLoess(x="maA",y="maM",z=NULL)))
# Composite normalization as in Yang et al. (2002)
# No MSP controls are available here, so all spots are used for illustration
# purposes
swirl.norm <- maNormMain(swirl[,1], f.loc = list(maNormLoess(x="maA",y="maM",z=NULL),maNormLoess(x="maA",y="maM",z="maPrintTip")), a.loc=maCompNormA())
maNormMed()
Median location normalization function
Description
This function is used for location normalization using the median of
intensity log-ratios for a group of spots. The function should be used
as an argument to the main normalization function maNormMain
.
Usage
maNormMed(x=NULL, y="maM", subset=TRUE)
Arguments
Argument | Description |
---|---|
x | Name of accessor method for spot statistic used to stratify the data, usually a layout parameter, e.g. maPrintTip or maPlate . If x is not a character, e.g. NULL, the data are not stratified. |
y | Name of accessor method for spot statistics, usually maM . |
subset | A "logical" or "numeric" vector indicating the subset of points used to compute the location normalization values. |
Value
A function with bindings for the above arguments. This latter function takes as
argument an object of class "
(or possibly
"
), and returns a vector of fitted values to be
subtracted from the raw log-ratios. It calls the function maMed
,
which is not specific to microarray objects.
Seealso
maNormMain
, maMed
, median
.
Author
Sandrine Dudoit, http://www.stat.berkeley.edu/~sandrine .
References
S. Dudoit and Y. H. Yang. (2002). Bioconductor R packages for exploratory analysis and normalization of cDNA microarray data. In G. Parmigiani, E. S. Garrett, R. A. Irizarry and S. L. Zeger, editors, list("The Analysis of Gene Expression Data: Methods and Software") , Springer, New York. list() list()
Y. H. Yang, S. Dudoit, P. Luu, and T. P. Speed (2001). Normalization for cDNA microarray data. In M. L. Bittner, Y. Chen, A. N. Dorsel, and E. R. Dougherty (eds), list("Microarrays: Optical Technologies and Informatics") , Vol. 4266 of list("Proceedings of SPIE") . list() list()
Y. H. Yang, S. Dudoit, P. Luu, D. M. Lin, V. Peng, J. Ngai, and T. P. Speed (2002). Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation. list("Nucleic Acids Research") , Vol. 30, No. 4.
Examples
# See examples for maNormMain.
maNormScale()
Simple scale normalization function
Description
This function is a simple wrapper function around the main normalization
function maNormMain
. It allows the user to choose from a
set of two basic scale normalization procedures. The function operates
on an object of class "
(or possibly
"
, if normalization is performed in several
steps) and returns an object of class "
. This
function can be used to conormalize a batch of arrays
( norm="globalMAD"
option).
Usage
maNormScale(mbatch, norm=c("globalMAD", "printTipMAD"), subset=TRUE, geo=TRUE, Mscale=TRUE, echo=FALSE)
Arguments
Argument | Description |
---|---|
mbatch | An object of class " , containing intensity data for the batch of arrays to be normalized. An object of class marrayNorm may also be passed if normalization is performed in several steps. |
|norm
| A character string specifying the normalization procedures: list("
", list(list("globalMAD"), list("for global scale
", " normalization using the median absolute deviation (MAD), this allows between
", "slide scale normalization")), "
", list(list("printTipMAD"), list("for within-print-tip-group scale normalization
", " using the median absolute deviation (MAD).")), "
", "This argument can be
", " specified using the first letter of each method.")|
|subset
| A "logical" or "numeric" vector indicating the subset of points used to compute the normalization values.|
|geo
| If TRUE
, the MAD of each group is divided by the geometric mean of the MADs across groups (cf. Yang et al. (2002)). This allows observations to retain their original units.|
|Mscale
| If TRUE
, the scale normalization values are stored in the slot maMscale
of the object of class "
returned by the function, if FALSE
, these values are not retained.|
|echo
| If TRUE
, the index of the array currently being normalized is printed.|
Details
See maNormMain
for details and more general procedures.
Value
*
Seealso
maNormMain
, maNorm
.
Author
Sandrine Dudoit, http://www.stat.berkeley.edu/~sandrine .
References
S. Dudoit and Y. H. Yang. (2002). Bioconductor R packages for exploratory analysis and normalization of cDNA microarray data. In G. Parmigiani, E. S. Garrett, R. A. Irizarry and S. L. Zeger, editors, list("The Analysis of Gene Expression Data: Methods and Software") , Springer, New York. list() list()
Y. H. Yang, S. Dudoit, P. Luu, and T. P. Speed (2001). Normalization for cDNA microarray data. In M. L. Bittner, Y. Chen, A. N. Dorsel, and E. R. Dougherty (eds), list("Microarrays: Optical Technologies and Informatics") , Vol. 4266 of list("Proceedings of SPIE") . list() list()
Y. H. Yang, S. Dudoit, P. Luu, D. M. Lin, V. Peng, J. Ngai, and T. P. Speed (2002). Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation. list("Nucleic Acids Research") , Vol. 30, No. 4.
Examples
# Examples use swirl dataset, for description type ? swirl
data(swirl)
# Global median normalization followed by global MAD normalization for
# only arrays 2 and 3 in the batch swirl
mnorm1<-maNorm(swirl[,2:3], norm="m")
mnorm2<-maNormScale(mnorm1, norm="g")
maNum2Logic()
Convert a numeric vector of indices to a logical vector
Description
This function converts a numeric vector of indices to a logical vector. It is used for subsetting purposes.
Usage
maNum2Logic(n=length(subset), subset=TRUE)
Arguments
Argument | Description |
---|---|
n | the length of the logical vector to be produced. |
subset | a numeric vector of indices. A logical vector may also be supplied, in which case it is also the value of the function. |
Value
a logical vector.
Author
Sandrine Dudoit, http://www.stat.berkeley.edu/~sandrine .
Examples
maNum2Logic(10, 1:3)
maPalette()
Microarray color palette
Description
This function returns a vector of color names corresponding to a range of colors specified in the arguments.
Usage
maPalette(low = "white", high = c("green", "red"), mid=NULL, k =50)
Arguments
Argument | Description |
---|---|
low | Color for the lower end of the color palette, specified using any of the three kinds of R colors, i.e., either a color name (an element of colors ), a hexadecimal string of the form "#rrggbb" , or an integer i meaning palette()[i] . |
high | Color for the upper end of the color palette, specified using any of the three kinds of R colors, i.e., either a color name (an element of colors ), a hexadecimal string of the form "#rrggbb" , or an integer i meaning palette()[i] . |
mid | Color for the middle portion of the color palette, specified using any of the three kinds of R colors, i.e., either a color name (an element of colors ), a hexadecimal string of the form "#rrggbb" , or an integer i meaning palette()[i] . |
k | Number of colors in the palette. |
Value
A "character" vector of color names. This can be used to create a user-defined color palette for subsequent graphics by palette
, in a col=
specification in graphics functions, or in par
.
Seealso
image
, maColorBar
, maImage
, maImage.func
.
Author
Sandrine Dudoit, http://www.stat.berkeley.edu/~sandrine , Yee Hwa (Jean) Yang.
References
S. Dudoit and Y. H. Yang. (2002). Bioconductor R packages for exploratory analysis and normalization of cDNA microarray data. In G. Parmigiani, E. S. Garrett, R. A. Irizarry and S. L. Zeger, editors, The Analysis of Gene Expression Data: Methods and Software , Springer, New York.
Examples
par(mfrow=c(1,4))
pal <- maPalette(low="red", high="green")
maColorBar(seq(-2,2, 0.2), col=pal, horizontal=FALSE, k=21)
pal <- maPalette(low="red", high="green", mid="yellow")
maColorBar(seq(-2,2, 0.2), col=pal, horizontal=FALSE, k=21)
pal <- maPalette()
maColorBar(seq(-2,2, 0.2), col=pal, horizontal=FALSE, k=21)
pal <- maPalette(low="purple", high="purple",mid="white")
maColorBar(seq(-2,2, 0.2), col=pal, horizontal=FALSE, k=21)
maPlot()
Scatter-plots for cDNA microarray spot statistics
Description
The function maPlot
produces scatter-plots of
microarray spot statistics for the classes "
and "
.
It also allows the user to highlight and annotate subsets of points on the plot, and display fitted
curves from robust local regression or other smoothing procedures.
Usage
maPlot(m, x="maA", y="maM", z="maPrintTip", lines.func, text.func, legend.func, list())
Arguments
Argument | Description |
---|---|
m | Microarray object of class " and " . |
x | Name of accessor function for the abscissa spot statistic, typically a slot name for the microarray object m , such as maA . |
y | Name of accessor function for the ordinate spot statistic, typically a slot name for the microarray object m , such as maM . |
z | Name of accessor method for the spot statistic used to stratify the data, typically a slot name for the microarray layout object (see " ) such as maPlate or a method such as maPrintTip . If z is NULL, the data are not stratified. |
lines.func | Function for computing and plotting smoothed fits of y as a function of x , separately within values of z , e.g. maLoessLines . If lines.func is NULL, no fitting is performed. |
text.func | Function for highlighting a subset of points, e.g., maText . If text.func is NULL, no points are highlighted. |
legend.func | Function for adding a legend to the plot, e.g. maLegendLines . If legend.func is NULL, there is no legend. |
list() | Optional graphical parameters, see par . |
Details
This function calls the general function maPlot.func
, which is not specific to microarray data. If there are more than one array in the batch, the plot is done for the first array, by default. Default graphical parameters are chosen for convenience using the function maDefaultPar
(e.g. color palette, axis labels, plot title) but the user has the option to overwrite these parameters at any point.
Seealso
maPlot.func
, maDefaultPar
, maLoessLines
, maLegendLines
, maText
, plot
, lowess
, loess
, legend
.
Author
Sandrine Dudoit, http://www.stat.berkeley.edu/~sandrine .
References
S. Dudoit and Y. H. Yang. (2002). Bioconductor R packages for exploratory analysis and normalization of cDNA microarray data. In G. Parmigiani, E. S. Garrett, R. A. Irizarry and S. L. Zeger, editors, The Analysis of Gene Expression Data: Methods and Software , Springer, New York.
Examples
# To see the demo type demo(marrayPlots)
# Examples use swirl dataset, for description type ? swirl
data(swirl)
# - Default arguments
maPlot(swirl)
# Lowess fit using all spots
maPlot(swirl, z=NULL, legend.func=NULL)
# Loess fit using all spots
maPlot(swirl, z=NULL, legend.func=maLegendLines(legend="All spots",col="green"), lines.func=maLoessLines(loess.args=list(span=0.3),col="green"))
# Pre-normalization MA-plot for the Swirl 81 array, with the lowess fits for
# individual grid columns and 1% tails of M highlighted
defs <- maDefaultPar(swirl[, 1], x = "maA", y = "maM", z = "maGridCol")
legend.func <- do.call("maLegendLines", defs$def.legend)
lines.func <- do.call("maLowessLines", c(list(TRUE, f = 0.3), defs$def.lines))
text.func<-maText(subset=maTop(maM(swirl)[,1],h=0.01,l=0.01), labels="o", col="violet")
maPlot(swirl[, 1], x = "maA", y = "maM", z = "maGridCol", lines.func=lines.func, text.func = text.func, legend.func=legend.func, main = "Swirl array 81: pre-normalization MA-plot")
maPlotfunc()
Scatter-plots with fitted curves and text
Description
This function produces scatter-plots of x
vs. y
. It also allows the user to highlight and annotate subsets of points on the plot, and display fitted curves from robust local regression or other smoothing procedures.
Usage
maPlot.func(x, y, z,
lines.func = maLowessLines(subset = TRUE, f = 0.3, col = 1:length(unique(z)), lty = 1, lwd = 2.5),
text.func = maText(),
legend.func = maLegendLines(legend = as.character(unique(z)), col = 1:length(unique(z)), lty = 1, lwd = 2.5, ncol = 1),
...)
Arguments
Argument | Description |
---|---|
x | A "numeric" vector for the abscissa. |
y | A "numeric" vector for the ordinates. |
z | A vector of statistic used to stratify the data, smoothed curves are fitted separately within values of z |
lines.func | A function for computing and plotting smoothed fits of y as a function of x , separately within values of z , e.g. maLoessLines . |
text.func | A function for highlighting a subset of points, e.g., maText . |
legend.func | A function for adding a legend to the plot, e.g. maLegendLines . |
list() | Optional graphical parameters, see par . |
Seealso
maPlot
, maLoessLines
, maLegendLines
, maText
, plot
, lowess
, loess
, legend
.
Author
Sandrine Dudoit, http://www.stat.berkeley.edu/~sandrine .
References
S. Dudoit and Y. H. Yang. (2002). Bioconductor R packages for exploratory analysis and normalization of cDNA microarray data. In G. Parmigiani, E. S. Garrett, R. A. Irizarry and S. L. Zeger, editors, The Analysis of Gene Expression Data: Methods and Software , Springer, New York.
Examples
# See examples for maPlot.
maSelectGnames()
Select genes according to the values of a few different statistics
Description
Select genes by considering the union
or
intersect
of multiple statistics.
Usage
maSelectGnames(statdata, crit1 = 50, crit2 = crit1, sub = TRUE, selectstat, operate = c("intersect", "union"))
Arguments
Argument | Description |
---|---|
statdata | A numerical matrix where the rows corresponds to genes and the columns corresponds to various statistics corresponding to a particular gene. |
crit1 | The number of points to be selected. If crit1 < 1, the crit1*100% spots with the smallest M values will be selected. If crit1 >= 1, the crit spots with the smallest M values are selected. |
crit2 | Similar to "crit1". If crit2 < 1, the crit2*100% spots with the largest M values will be selected. If crit2 >= 1, the crit2 spots with the largest M values are selected. |
sub | A "logical" or "numeric" vector indicating the subset of genes to be consider. |
selectstat | A integer value indicating the statistics where the final ranking is based on. |
operate | The operation used to combined different rankings |
Details
This functions calls stat.gnames
to select say the 100
most extreme genes from various statistics and combined the different
gene lists by either union or intersection.
Value
A vector of numeric values.
Seealso
Author
Jean Yee Hwa Yang
Examples
X <- matrix(rnorm(1000), 100,10)
Xstat <- cbind(mean=apply(X, 1, mean, na.rm=TRUE),
var=apply(X, 1, var, na.rm=TRUE))
maSelectGnames(Xstat, crit1=50)
maText()
Highlight points on a plot
Description
This function may be used to highlight a subset of points on an existing
plot, such as a plot produced by plot
,
maPlot
, or maPlot.func
.
Usage
maText(subset=NULL, labels=as.character(1:length(subset)), ...)
Arguments
Argument | Description |
---|---|
subset | A "logical" or "numeric" vector indicating the subset of points to highlight. |
labels | One or more character strings or expressions specifying the text to be written. |
list() | Optional graphical parameters, see par . |
Value
A function with bindings for subset
, labels
, and list() . This latter function takes as arguments x
and y
, the absissa and ordinates of points on the plot.
Seealso
text
, maPlot
, maPlot.func
.
Author
Sandrine Dudoit, http://www.stat.berkeley.edu/~sandrine .
References
S. Dudoit and Y. H. Yang. (2002). Bioconductor R packages for exploratory analysis and normalization of cDNA microarray data. In G. Parmigiani, E. S. Garrett, R. A. Irizarry and S. L. Zeger, editors, The Analysis of Gene Expression Data: Methods and Software , Springer, New York.
Examples
# See examples for maPlot.
maTop()
Identify extreme values
Description
This function determines which values in a numeric vector are above or below user supplied cut-offs.
Usage
maTop(x, h=1, l=1)
Arguments
Argument | Description |
---|---|
x | A "numeric" vector. |
h | A "numeric", upper cut-off. |
l | A "numeric", lower cut-off. |
Value
A "logical" vector indicating which entries are above or below the cut-offs.
Seealso
Author
Sandrine Dudoit, http://www.stat.berkeley.edu/~sandrine .
References
S. Dudoit and Y. H. Yang. (2002). Bioconductor R packages for exploratory analysis and normalization of cDNA microarray data. In G. Parmigiani, E. S. Garrett, R. A. Irizarry and S. L. Zeger, editors, The Analysis of Gene Expression Data: Methods and Software , Springer, New York.
Examples
# See examples for maPlot.
maTwoSamples()
Changing signs for two sample analysis
Description
Taking target file information and flip the dye swaps experiments.
Usage
maTwoSamples(targetfile, normdata, Trt, Ctl, targetID = "TargetName", slidesID = "Slides", dyesID = "Dyes", RedID = 5, path = ".", output = TRUE)
Arguments
Argument | Description |
---|---|
targetfile | A data.frame containing target samples information. |
normdata | A R object of class 'marrayNorm' |
Trt | A character string representing "treatment" sample. |
Ctl | A character string representing "controls" sample. |
targetID | A character string representing the column name in 'targetfile' containing target samples information. |
slidesID | A character string representing the column name in 'targetfile' containing the slide label. |
dyesID | A character string representing the column name in 'targetfile' containing dye labeled information. |
RedID | The character use to represent the Cy5 dye. |
path | A character string representing the data directory. By default this is set to the current working directory ("."). |
output | Save and tab delimited file |
Value
An objects of 'marrayNorm' with the dye assignment adjusted.
Author
Yee Hwa (Jean) Yang
mapGeneInfo()
Creating URL strings for external database links
Description
These functions are used with htmlPage
.
The function mapGeneInfo
, takes all the arguments and generate
a character matrix of two columns. The first columns representing the
name of the argument and the second columns represents the value of an
argument.
The function widget.mapGeneInfo
allows the user to enter this
information interactively.
Usage
mapGeneInfo(widget = FALSE, Gnames, Name = "pubmed", ID =
"genbank", ACC = "SMDacc", ...)
widget.mapGeneInfo(Gnames)
Arguments
Argument | Description |
---|---|
widget | A logical value specifying if widgets should be used. |
Name | The external database for spot description, E.g. "pubmed". |
ID | The external database for spot ID, E.g. "operon", "Riken", "locuslink". |
ACC | The external database for gene accession number, E.g. "genebank". |
Gnames | An object of class matrix , data.frame or marrayInfo which contains description of spotted probe sequences. |
list() | Other column names |
Details
The function mapGeneInfo
generates a character matrix with the
first column representing the column headings of "Gnames" and the
second column representing the corresponding names in the list
URLstring
. For example, if a particular column in "Gnames"
with column names "ID" contains genebank accession number, then the
function mapGeneInfo
generates a row containing "ID" in the
first column and "genbank" in the second. Examples are SFGL
and UCBFGL
. list()
URLstring
is a list contains the URL to various external
database, E.g. operon, Riken, genbank. list()
The current choices are:
"pubmed", "locuslink", "riken", "SMDclid", "SMDacc", "operonh2", "operonh1" ,
"operonm2", "operonm1" and "genbank" .
"SMDclid" and "SMDacc" are links to Stanford Microarray Databases.
Author
Jean Yee Hwa Yang
Examples
mapGeneInfo(ID="genebank", ll="locuslink")
mapGeneInfo(ID="locuslink", Sample.ID="riken")
marrayInfo_class()
Class "marrayInfo", description of target samples or spotted probe sequences
Description
This class is used to store information on target samples hybridized to a batch of arrays or probe sequences spotted onto these arrays. It is not specific to the microarray context.
Seealso
marrayLayout
, marrayRaw
, marrayNorm
.
Author
Jean Yang and Sandrine Dudoit
References
S. Dudoit and Y. H. Yang. (2002). Bioconductor R packages for exploratory analysis and normalization of cDNA microarray data. In G. Parmigiani, E. S. Garrett, R. A. Irizarry and S. L. Zeger, editors, The Analysis of Gene Expression Data: Methods and Software , Springer, New York.
Examples
## See marrayRaw
marrayLayout_class()
Class "marrayLayout", classes and methods for layout parameters of cDNA microarrays
Description
This class is used to keep track of important layout parameters for two-color cDNA microarrays. It contains slots for: the total number of spotted probe sequences on the array, the dimensions of the spot and grid matrices, the plate origin of the probes, information on spotted control sequences (e.g. probe sequences which should have equal abundance in the two target samples, such as housekeeping genes). The terms print-tip-group , grid , spot matrix , and sector are used interchangeably and refer to a set of spots printed using the same print-tip.
Seealso
marrayRaw
, marrayNorm
,
marrayInfo
and [[-methods
](#[-methods) .
Author
Sandrine Dudoit, http://www.stat.berkeley.edu/~sandrine .
References
S. Dudoit and Y. H. Yang. (2002). Bioconductor R packages for exploratory analysis and normalization of cDNA microarray data. In G. Parmigiani, E. S. Garrett, R. A. Irizarry and S. L. Zeger, editors, The Analysis of Gene Expression Data: Methods and Software , Springer, New York.
Examples
## See marrayRaw
marrayNorm_class()
Class "marrayNorm", classes and methods for post-normalization cDNA microarray intensity data
Description
This class represents post-normalization intensity data for a batch of cDNA microarrays. A batch of arrays consists of a collection of arrays with the same layout ( "
). The class contains slots for the average log-intensities A, the normalized log-ratios M, the location and scale normalization values, the layout of the arrays, and descriptions of the target samples hybridized to the arrays and probe sequences spotted onto the arrays.
Seealso
marrayLayout
, marrayRaw
,
marrayInfo
Author
Sandrine Dudoit, http://www.stat.berkeley.edu/~sandrine .
References
S. Dudoit and Y. H. Yang. (2002). Bioconductor R packages for exploratory analysis and normalization of cDNA microarray data. In G. Parmigiani, E. S. Garrett, R. A. Irizarry and S. L. Zeger, editors, The Analysis of Gene Expression Data: Methods and Software , Springer, New York.
Examples
# Examples use swirl dataset, for description type ? swirl
data(swirl)
# Median normalization
mnorm<-maNorm(swirl[,2:3],norm="m")
# Object of class marrayNorm for the second and third swirl arrays
mnorm
# Function call
maNormCall(mnorm)
# Object of class marrayInfo -- Probe sequences
maGnames(mnorm)
# Object of class marrayInfo -- Target samples
maTargets(mnorm)
# Density plot of log-ratios M for third array
plot(density(maM(mnorm[,2])), lwd=2, col=2, main="Density plots of log-ratios M")
lines(density(maM(swirl[,3])), lwd=2)
abline(v=0)
legend(2,1,c("Pre-normalization","Post-normalization"))
marrayRaw_class()
Class "marrayRaw", classes and methods for pre-normalization cDNA microarray intensity data
Description
This class represents pre-normalization intensity data for
a batch of cDNA microarrays. A batch of arrays consists of a
collection of arrays with the same layout
( "
). The class contains slots for the green
(Cy3) and red (Cy5) foreground and background intensities, the layout
of the arrays, and descriptions of the target samples hybridized to
the arrays and probe sequences spotted onto the arrays.
Seealso
marrayLayout
, marrayNorm
, marrayInfo
.
Author
Sandrine Dudoit, http://www.stat.berkeley.edu/~sandrine .
References
S. Dudoit and Y. H. Yang. (2002). Bioconductor R packages for exploratory analysis and normalization of cDNA microarray data. In G. Parmigiani, E. S. Garrett, R. A. Irizarry and S. L. Zeger, editors, The Analysis of Gene Expression Data: Methods and Software , Springer, New York.
Examples
# Examples use swirl dataset, for description type ? swirl
require(limma)
data(swirl)
# Object of class marrayRaw for the 4 swirl arrays
swirl
# Object of class marrayLayout
maLayout(swirl)
# Access only the first 100 spots of the third array
swirl[1:100,3]
# Accessor methods -- How many spots on the array
maNspots(swirl)
# Density plot of log-ratios M for third array
plot(density(maM(swirl[,3])))
# Assignment methods -- Replace maNotes slot
maNotes(swirl)
maNotes(swirl)<-"This is a zebrafish microarray"
maNotes(swirl)
marray_internal()
Internal marray functions
Description
Internal marray functions
Details
These are not to be called by the user.
opVersionID()
Determine the operon oligo set ID
Description
This functions looks the operon ID and determine whether it belongs to "Human Genome Oligo Set V1", "Human Genome Oligo Set V2", "Mouse Genome Oligo Set V1" or "Mouse Genome Oligo Set V2".
Usage
opVersionID(opID)
Arguments
Argument | Description |
---|---|
opID | A character strings representing operon ID |
Value
A value "operonh1", "operonh2", "operonm1" or "operonm2" to represents "Human Genome Oligo Set V1", "Human Genome Oligo Set V2", "Mouse Genome Oligo Set V1" or "Mouse Genome Oligo Set V2".
Seealso
Author
Jean Yee Hwa Yang
References
Examples
opVersionID("M000205_01")
URLstring[opVersionID("M000205_01")]
plotMA()
Scatter-plots for cDNA microarray spot statistics
Description
The function maPlot
or plot
produces scatter-plots of
microarray spot statistics for the classes "
,
"
. It also allows the user to highlight and
annotate subsets of points on the plot, and display fitted curves from
robust local regression or other smoothing procedures.
Usage
list(list("plot"), list("marrayRaw"))(x, xvar = "maA", yvar = "maM", zvar="maPrintTip", lines.func,text.func,legend.func, list())
list(list("plot"), list("marrayNorm"))(x, xvar = "maA", yvar = "maM", zvar="maPrintTip", lines.func,text.func,legend.func, list())
addText(object, xvar="maA", yvar="maM", subset=NULL, labels=as.character(1:length(subset)), list())
addPoints(object, xvar="maA", yvar="maM", subset=TRUE, list())
addLines(object, xvar="maA", yvar="maM", zvar="maPrintTip", subset=TRUE, list())
list(list("text"), list("marrayRaw"))(x, xvar = "maA", yvar = "maM", list())
list(list("text"), list("marrayNorm"))(x, xvar = "maA", yvar = "maM", list())
list(list("lines"), list("marrayRaw"))(x, xvar = "maA", yvar = "maM", zvar = "maPrintTip", list())
list(list("lines"), list("marrayNorm"))(x, xvar = "maA", yvar = "maM", zvar = "maPrintTip",list())
list(list("points"), list("marrayRaw"))(x, xvar = "maA", yvar = "maM", list())
list(list("points"), list("marrayNorm"))(x, xvar = "maA", yvar = "maM", list())
Arguments
Argument | Description |
---|---|
x | Microarray object of class " , " . |
object | Microarray object of class " , " . |
xvar | Name of accessor function for the abscissa spot statistic, typically a slot name for the microarray object x , such as maA . |
yvar | Name of accessor function for the ordinate spot statistic, typically a slot name for the microarray object x , such as maM . |
zvar | Name of accessor method for the spot statistic used to stratify the data, typically a slot name for the microarray layout object (see " ) such as maPlate or a method such as maPrintTip . If zvar is NULL , the data are not stratified. |
lines.func | Function for computing and plotting smoothed fits of y as a function of x , separately within values of zvar , e.g. maLoessLines . If lines.func is NULL , no fitting is performed. |
text.func | Function for highlighting a subset of points, e.g., maText . If text.func is NULL , no points are highlighted. |
legend.func | Function for adding a legend to the plot, e.g. maLegendLines . If legend.func is NULL , there is no legend. |
subset | logical vector or numeric values indicating the subset of points to be plotted. |
labels | One or more character strings or expressions specifying the text to be written. |
list() | Optional graphical parameters, see par . |
Details
This function calls the general function maPlot.func
,
which is not specific to microarray data. If there are more than one
array in the batch, the plot is done for the first array, by
default. Default graphical parameters are chosen for convenience using
the function maDefaultPar
(e.g. color palette, axis
labels, plot title) but the user has the option to overwrite these
parameters at any point.
Seealso
maPlot.func
, maDefaultPar
, maLoessLines
, maLegendLines
, maText
, plot
, lowess
, loess
, legend
.
Author
Jean Yee Hwa Yang
References
S. Dudoit and Y. H. Yang. (2002). Bioconductor R packages for exploratory analysis and normalization of cDNA microarray data. In G. Parmigiani, E. S. Garrett, R. A. Irizarry and S. L. Zeger, editors, The Analysis of Gene Expression Data: Methods and Software , Springer, New York.
Examples
# To see the demo type demo(marrayPlots)
# Examples use swirl dataset, for description type ? swirl
data(swirl)
# Pre-normalization MA-plot for the Swirl 93 array, with the lowess fits for
# individual print-tip-groups.
# - Default arguments
plot(swirl[,3])
# Lowess fit using all spots
plot(swirl[,3], zvar=NULL, legend.func=NULL)
# Loess fit using all spots
plot(swirl[,3], zvar=NULL, legend.func=maLegendLines(legend="All spots",col="green"), lines.func=maLoessLines(loess.args=list(span=0.3),col="green"))
print_methods()
Printing summary methods for microarray objects
Description
Print methods were defined for the microarray classes,
"
, "
,
"
, "
. These methods
produce summaries of the intensity and textual data stored in different
classes of microarray objects.
readGalfile()
Reading GenePix Gal file
Description
Reading a standard Gal file containing gene information.
Usage
read.Galfile(galfile, path = ".", info.id = c("ID", "Name"),
layout.id =c(Block="Block", Row="Row", Column="Column"),
labels = "ID", notes = "", sep = " ", skip = NULL, ncolumns=4, ...)
Arguments
Argument | Description |
---|---|
galfile | a character string representing the Gal file. |
path | a character string representing the data directory. By default this is set to the current working directory ("."). |
info.id | the column numbers or names in `fname' that contain the required information. |
layout.id | the column names in `fname' that specified the printer layout information. |
labels | the column number in fname which contains the names that the user would like to use to label spots or arrays (e.g. for default titles in maPlot . |
notes | object of class character, vector of explanatory text |
sep | the field separator character. Values on each line of the file are separated by this character. The default is to read a tab delimited file. |
skip | the number of lines of the data file to skip before beginning to read data. |
ncolumns | an integer representing the number of columns of sub-array (print-tips) on a slides. |
list() | further arguments to scan . |
Value
*
Seealso
read.marrayInfo
, read.marrayLayout
Author
Yee Hwa (Jean) Yang
Examples
library(marray)
datadir <- system.file("swirldata", package="marray")
try <- read.Galfile(galfile="fish.gal", path=datadir)
names(try)
try$layout
try$gnames
readmarrayInfo()
Create objects of class marrayInfo
Description
This function creates objects of class marrayInfo
. The marrayInfo
class is used to store
information regarding the target mRNA samples co-hybridized on the arrays or
the spotted probe sequences (e.g. data frame of gene names, annotations, and other identifiers).
Usage
read.marrayInfo(fname, info.id=NULL, labels=NULL, notes=fname, sep=" ",skip=0, quote=""", ...)
Arguments
Argument | Description |
---|---|
fname | the name of the file that stores information on target samples or probe sequences. This is usually a file obtained from a database. |
info.id | the column numbers in fname that contain the required information. |
labels | the column number in fname which contains the names that the user would like to use to label spots or arrays (e.g. for default titles in maPlot . |
notes | object of class character, vector of explanatory text |
sep | the field separator character. Values on each line of the file are separated by this character. The default is to read a tab delimited file. |
skip | the number of lines of the data file to skip before beginning to read data. |
quote | the set of quoting characters. By default, this is disable by setting `quote="""'. |
list() | further arguments to scan . |
Value
An object of class marrayInfo
.
Author
Jean Yang, yeehwa@stat.berkeley.edu
References
http://www.bioconductor.org/
Examples
datadir <- system.file("swirldata", package="marray")
## Reading target sample information
swirl.samples <- read.marrayInfo(file.path(datadir, "SwirlSample.txt"))
## Reading probe sequence information
swirl.gnames <- read.marrayInfo(file.path(datadir, "fish.gal"),
info.id=4:5, labels=5, skip=21)
readmarrayLayout()
Create objects of class marrayLayout
Description
This function creates objects of class marrayLayout
to store layout parameters for two-color cDNA microarrays.
Usage
read.marrayLayout(fname = NULL, ngr, ngc, nsr, nsc, pl.col = NULL, ctl.col = NULL, sub.col = NULL, notes = fname, skip, sep = " ", quote = """, ...)
Arguments
Argument | Description |
---|---|
fname | the name of the file that stores plate and control information. This is usually a file obtained from a database. |
ngr | the number of rows of grids per image. |
ngc | the number of columns of grids per image. |
nsr | the number of rows of spots per grid. |
nsc | the number of columns of spots per grid. |
pl.col | the column number in fname that contains plate information. |
ctl.col | the column number in fname that contains control information. |
sub.col | the column number in fname that contains full ID information. |
notes | object of class character, vector of explanatory text. |
skip | the number of lines of the data file to skip before beginning to read data. |
sep | the field separator character. Values on each line of the file are separated by this character. The default is to read a tab delimited file. |
quote | the set of quoting characters. By default, this is disable by setting `quote="""'. |
list() | further arguments to scan . |
Value
An object of class marrayLayout
.
Author
Jean Yang yeehwa@stat.berkeley.edu
References
http://www.bioconductor.org/
Examples
datadir <- system.file("swirldata", package="marray")
### Reading in control information from file
skip <- grep("Row", readLines(file.path(datadir,"fish.gal"), n=100)) - 1
swirl.layout <- read.marrayLayout(fname=file.path(datadir,"fish.gal"), ngr=4, ngc=4,
nsr=22, nsc=24, ctl.col=4, skip=skip)
### Setting control information.
swirl.gnames <- read.marrayInfo(file.path(datadir,"fish.gal"), info.id=4:5, labels=5, skip=21)
x <- maInfo(swirl.gnames)[,1]
y <- rep(0, maNspots(swirl.layout))
y[x == "control"] <- 1
slot(swirl.layout, "maControls") <- as.factor(y)
readmarrayRaw()
Create objects of class "marrayRaw"
Description
This function reads in cDNA microarray data from a directory and creates objects of
class "
from spot quantification data files obtained from image analysis software or databases.
Usage
read.marrayRaw(fnames, path=".", name.Gf=NULL, name.Gb=NULL, name.Rf=NULL,
name.Rb=NULL,name.W=NULL, layout=NULL, gnames=NULL, targets=NULL,
notes=NULL, skip=NULL, sep=" ", quote=""", DEBUG=FALSE, ...)
read.GenePix(fnames = NULL, path = NULL, name.Gf = "F532 Median",
name.Gb ="B532 Median", name.Rf = "F635 Median", name.Rb = "B635 Median",
name.W ="Flags", layout = NULL, gnames = NULL, targets = NULL,
notes = NULL, skip=NULL, sep = " ", quote = """, DEBUG=FALSE, ...)
read.SMD(fnames = NULL, path = NULL, name.Gf = "Ch1 Intensity (Median)",
name.Gb = "Ch1 Background (Median)", name.Rf = "Ch2 Intensity (Median)",
name.Rb = "Ch2 Background (Median)", name.W = NULL, info.id = c("Name",
"Clone ID"), layout = NULL, gnames = NULL, targets = NULL, notes = NULL, skip = NULL, sep = " ", quote = """, DEBUG=FALSE, ...)
read.Spot(fnames = NULL, path = ".", name.Gf = "Gmean", name.Gb =
"morphG", name.Rf = "Rmean", name.Rb = "morphR",name.W = NULL, layout =
NULL, gnames = NULL, targets = NULL, notes = NULL, skip = NULL, sep = " ", quote = """, DEBUG=FALSE, ...)
read.Agilent(fnames = NULL, path=NULL, name.Gf = "gMedianSignal", name.Gb = "gBGMedianSignal", name.Rf = "rMedianSignal", name.Rb = "rBGMedianSignal", name.W= NULL, layout = NULL, gnames = NULL, targets = NULL, notes=NULL, skip=NULL, sep=" ", quote=""", DEBUG=FALSE, info.id=NULL, ...)
widget.marrayRaw(ext = c("spot", "xls", "gpr"), skip = 0, sep = " ", quote = """, ...)
Arguments
Argument | Description |
---|---|
fnames | a vector of character strings containing the file names of each spot quantification data file. These typically end in .spot for the software Spot or .gpr for the software GenePix . |
path | a character string representing the data directory. By default this is set to the current working directory ("."). In the case where fnames contains the full path name, path should be set to NULL. |
name.Gf | character string for the column header for green foreground intensities. |
name.Gb | character string for the column header for green background intensities. |
name.Rf | character string for the column header for red foreground intensities. |
name.Rb | character string for the column header for red background intensities. |
name.W | character string for the column header for spot quality weights. |
layout | object of class " , containing microarray layout parameters. |
gnames | object of class " containing probe sequence information. |
targets | object of class " containing target sample information. |
notes | object of class "character" , vector of explanatory text. |
info.id | object of class "character" , vector containing the name of the colums of the SMD file containing oligo information you want to retrieve. By default, this is set to read Homo sapiens data. You may need to modify this argument if your are working on another genome. |
skip | the number of lines of the data file to skip before beginning to read in data. |
sep | the field separator character. Values on each line of the file are separated by this character. The default is to read a tab delimited file. |
quote | the set of quoting characters. By default, this is disabled by setting quote=""" . |
ext | a characters string representing suffix of different image analysis output files. |
DEBUG | a logical value, if TRUE, a series of echo statements will be printed. |
list() | further arguments to scan . |
Value
An object of class "
.
Seealso
scan
, read.marrayLayout
,
read.marrayInfo
Author
Jean Yang, yeehwa@stat.berkeley.edu
References
http://www.bioconductor.org/ .
Examples
datadir <- system.file("swirldata", package="marray")
## Quick guide
swirl.targets <- read.marrayInfo(file.path(datadir, "SwirlSample.txt"))
data <- read.Spot(path=datadir, targets=swirl.targets)
## Alternate commands
skip <- grep("Row", readLines(file.path(datadir,"fish.gal"), n=100)) - 1
swirl.layout <- read.marrayLayout(ngr=4, ngc=4, nsr=22, nsc=24)
swirl.targets <- read.marrayInfo(file.path(datadir, "SwirlSample.txt"))
swirl.gnames <- read.marrayInfo(file.path(datadir, "fish.gal"),
info.id=4:5, labels=5, skip=skip)
x <- maInfo(swirl.gnames)[,1]
y <- rep(0, maNspots(swirl.layout))
y[x == "control"] <- 1
slot(swirl.layout, "maControls") <- as.factor(y)
fnames <- dir(path=datadir,pattern="spot")
swirl<- read.Spot(fnames, path=datadir,
layout = swirl.layout,
gnames = swirl.gnames,
targets = swirl.targets)
rmna()
Remove missing values
Description
Remove NA's, NAN's and INF's from a vector.
Usage
rm.na(x)
Arguments
Argument | Description |
---|---|
x | A numeric vector |
Value
A vector with all NA's remove.
Author
Jean Yang
Examples
x <- round(rnorm(10), 2)
x[c(2,4,5)] <- NA
x
rm.na(x)
showLargeObject()
Show Large Data Object - class
Description
A virtual class including the data classes marrayRaw
,
marrayNorm
, marrayInfo
, marrayLayout
,
PrinterInfo
, RGData
and MAData
, all of which typically contain large
quantities of numerical data in vector, matrices and data.frames.
Author
modifid from Gordon Smyth's function
statconfbandtext()
Rank genes according to the value of a statistic.
Description
Select values based on intensities binning.
Usage
stat.confband.text(M, A, crit1=0.025, crit2=crit1, nclass=5)
Arguments
Argument | Description |
---|---|
A | a vector giving the x-coordinates of the points in the scatter plot. In the microarray context, this could be a vector of average log intensities. ie A |
M | a vector giving the y-coordinates of the points in the scatter plot. In the microarray context, this could be a vector of log intensity ratios. |
crit1 | The number of points to be selected. If crit1 < 1, the crit1*100% spots with the smallest M values will be selected. If crit1 >= 1, the crit spots with the smallest M values are selected. |
crit2 | Similar to "crit1". If crit2 < 1, the crit2*100% spots with the largest M values will be selected. If crit2 >= 1, the crit2 spots with the largest M values are selected. |
nclass | A single number giving the approximate number of intensity depedent groups to consider. |
Value
A vector of selected spot index.
Seealso
Examples
library(marray)
data(swirl)
aveA <- apply(maA(swirl), 1, mean.na)
aveM <- apply(maM(swirl), 1, mean.na)
stat.confband.text(aveM, aveA, crit1=20, crit2=50, nclass=5)
statgnames()
Sort Genes According to the Value of a Statistic
Description
Lists genes and corresponding statistics in decreasing order of the
statistics. This function applies to any type of statistic, including
log ratios, one and two-sample t-statistics, and F-statistics. Missing
values are ignored, as in sort
.
Usage
stat.gnames(x, gnames, crit= 50)
Arguments
Argument | Description |
---|---|
x | a numeric vector containing the statistics for each gene. Missing values (NAs) are allowed. |
gnames | a character vector containing the gene names. |
crit | specifies the number of genes to be returned. If crit < 1, the crit*100% genes with the largest x values are listed. If crit >= 1, the crit genes with the largest x values are listed. |
Value
List containing the following components
*
Seealso
Author
Yee Hwa Yang, list("yeehwa@stat.berkeley.edu") list() Sandrine Dudoit, list("sandrine@stat.berkeley.edu")
Examples
data(swirl)
aveM <- apply(maM(swirl), 1, mean.na)
Gnames <- maGeneTable(swirl)
stat.gnames(abs(aveM), Gnames, crit=10)
stat.gnames(aveM, Gnames, crit=0.01)
swirl()
Gene expression data from Swirl zebrafish cDNA microarray experiment
Description
The swirlRaw
dataset consists of an object swirl
of class marrayRaw
, which represents
pre-normalization intensity data for a batch of cDNA microarrays.
This experiment was carried out using zebrafish as a model organism to study early development in vertebrates. Swirl is a point mutant in the BMP2 gene that affects the dorsal/ventral body axis. Ventral fates such as blood are reduced, whereas dorsal structures such as somites and notochord are expanded. A goal of the Swirl experiment is to identify genes with altered expression in the swirl mutant compared to wild-type zebrafish. Two sets of dye-swap experiments were performed, for a total of four replicate hybridizations. For each of these hybridizations, target cDNA from the swirl mutant was labeled using one of the Cy3 or Cy5 dyes and the target cDNA wild-type mutant was labeled using the other dye. Target cDNA was hybridized to microarrays containing 8,448 cDNA probes, including 768 controls spots (e.g. negative, positive, and normalization controls spots). Microarrays were printed using $4 imes 4$ print-tips and are thus partitioned into a $4 imes 4$ grid matrix. Each grid consists of a $22 imes 24$ spot matrix that was printed with a single print-tip. Here, spot row and plate coordinates should coincide, as each row of spots corresponds to probe sequences from the same 384 well-plate. list()
Each of the four hybridizations produced
a pair of 16-bit images, which were processed using the image analysis software package Spot
. Raw images of the Cy3 and Cy5 fluorescence intensities for all fourhybridizations are available at http://fgl.lsa.berkeley.edu/Swirl/index.html .the dataset includes four output files
swirl.1.spot
,
swirl.2.spot
,
swirl.3.spot
, and
swirl.4.spot
from the Spot
package. Each of these files contains
8,448 rows and 30 columns; rows correspond to spots and columns to
different statistics from the Spot
image analysis output. The file
fish.gal
is a gal file generated by the GenePix
program; it contains information on individual probe sequences, such as gene names, spot ID, spot coordinates. Hybridization information for the mutant and wild-type target samples is stored in SwirlSample.txt
.
Usage
data(swirl)
writelist()
Data Output
Description
Writes information from a list into a text file.
Usage
write.list(x, filename = "data", append = FALSE, closefile = TRUE, outfile)
Arguments
Argument | Description |
---|---|
x | the list object to be written. |
filename | a character string representing the file name. |
append | logical; if true, the data x is appended to file filename . |
closefile | logical indicating if the file connection should be closed. |
outfile | file name or connections. |
Details
This function may be called recursively if there exists list structure within a list.
Seealso
Author
Jean Yee Hwa Yang
Examples
data(swirl)
test <- list(A = 1:10, B= maM(swirl)[1:10,], C=list(x=1:10, y=1:4),
D = summary(maA(swirl[,1])))
write.list(test, filename="test.txt")
writemarray()
Data Output
Description
Calls the function write.table with predefine argument. The entries in each line (row) are separated by tab.
Usage
write.marray(mraw, file="maRawResults.xls", val="maM", ...)
Arguments
Argument | Description |
---|---|
mraw | the object to be written, either a marrayRaw or marrayNorm object. |
file | a character string representing the file name. |
val | a character string representing the slotNames to be written. |
list() | further arguments to write.table . |
Details
see write.table
Seealso
Author
Jean Yee Hwa Yang
Examples
data(swirl)
write.marray(swirl[1:10,])
writexls()
Data Output
Description
Calls the function write.table with predefine argument. The entries in each line (row) are separated by tab.
Usage
write.xls(res, file = "test.xls", ...)
Arguments
Argument | Description |
---|---|
res | the object to be written, typically a data frame. If not, it is attempted to coerce x to a data frame. |
file | a character string representing the file name. |
list() | further arguments to write.table . |
Details
see write.table
Seealso
Author
Jean Yee Hwa Yang
Examples
data(swirl)
write.xls(maM(swirl)[1:10,], "normM.xls")