bioconductor v3.9.0 Oligo
A package to analyze oligonucleotide arrays
Link to this section Summary
Functions
Accessors for PM, MM or background probes indices.
Accessors and replacement methods for the intensity/PM/MM/BG matrices.
MA plots
Probe Sequeces
Sequence Base Contents
Simplified interface to PLM.
Simplified interface to RMA.
Boxplot
Accessor for chromosome information
Create set of colors, interpolating through a set of preferred colors.
Accessors for physical array coordinates.
Genotype Calls
Tool to fit Probe Level Models.
Estimate affinity coefficients.
Compute and plot nucleotide profile.
Get container information for NimbleGen Tiling Arrays.
Function to get CRLMM summaries saved to disk
NetAffx Biological Annotations
Helper function to extract color information for filenames on NimbleGen arrays.
Retrieve Platform Design object
Probe information selector.
Density estimate
Display a pseudo-image of a microarray chip
Summarization of SNP data
List XYS files
Defunct Functions in Package 'oligo'
Class "oligoPLM"
The oligo package: a tool for low-level analysis of oligonucleotide arrays
Methods for P/A Calls
Methods for Log-Ratio plotting
Access the allele information for PM probes.
Access the fragment length for PM probes.
Accessor to position information
Accessor to the strand information
Tools for microarray preprocessing.
Accessor to feature names
Read summaries generated by crlmm
Parser to CEL files
Parser to XYS files
RMA - Robust Multichip Average algorithm
Date of scan
Create design matrix for sequences
Preprocessing SNP Arrays
Link to this section Functions
Index_methods()
Accessors for PM, MM or background probes indices.
Description
Extracts the indexes for PM, MM or background probes.
Usage
mmindex(object, ...)
pmindex(object, ...)
bgindex(object, ...)
Arguments
Argument | Description |
---|---|
object | FeatureSet or DBPDInfo object |
... | Extra arguments, not yet implemented |
Details
The indices are ordered by 'fid', i.e. they follow the order that the probes appear in the CEL/XYS files.
Value
A vector of integers representing the rows of the intensity matrix that correspond to PM, MM or background probes.
Examples
## How pm() works
x <- read.celfiles(list.celfiles())
pms0 <- pm(x)
pmi <- pmindex(x)
pms1 <- exprs(x)[pmi,]
identical(pms0, pms1)
IntensityMatrix_methods()
Accessors and replacement methods for the intensity/PM/MM/BG matrices.
Description
Accessors and replacement methods for the PM/MM/BG matrices.
Usage
intensity(object)
mm(object, subset = NULL, target='core')
pm(object, subset = NULL, target='core')
bg(object, subset = NULL)
mm(object, subset = NULL, target='core')<-value
pm(object, subset = NULL, target='core')<-value
bg(object)<-value
Arguments
Argument | Description |
---|---|
object | FeatureSet object. |
subset | Not implemented yet. |
value | matrix object. |
target | One of 'probeset', 'core', 'full', 'extended'. This is ignored if the array design is something other than Gene ST or Exon ST. |
Details
For all objects but TilingFeatureSet
, these methods will
return matrices. In case of TilingFeatureSet
objects, the
value is a 3-dimensional array (probes x samples x channels).
intensity
will return the whole intensity matrix associated to
the object. pm
, mm
, bg
will return the respective
PM/MM/BG matrix.
When applied to ExonFeatureSet
or GeneFeatureSet
objects, pm
will return the PM matrix at the transcript level
('core' probes) by default. The user should set the target
argument accordingly if something else is desired. The valid values
are: 'probeset' (Exon and Gene arrays), 'core' (Exon and Gene arrays),
'full' (Exon arrays) and 'extended' (Exon arrays).
The target
argument has no effects when used on designs other
than Gene and Exon ST.
Examples
if (require(maqcExpression4plex) & require(pd.hg18.60mer.expr)){
xysPath <- system.file("extdata", package="maqcExpression4plex")
xysFiles <- list.xysfiles(xysPath, full.name=TRUE)
ngsExpressionFeatureSet <- read.xysfiles(xysFiles)
pm(ngsExpressionFeatureSet)[1:10,]
}
MAplot_methods()
MA plots
Description
Create MA plots using a reference array (if one channel) or using channel2 as reference (if two channel).
Usage
MAplot(object, ...)
list(list("MAplot"), list("FeatureSet"))(object, what=pm, transfo=log2, groups,
refSamples, which, pch=".", summaryFun=rowMedians,
plotFun=smoothScatter, main="vs pseudo-median reference chip",
pairs=FALSE, ...)
list(list("MAplot"), list("TilingFeatureSet"))(object, what=pm, transfo=log2, groups,
refSamples, which, pch=".", summaryFun=rowMedians,
plotFun=smoothScatter, main="vs pseudo-median reference chip",
pairs=FALSE, ...)
list(list("MAplot"), list("PLMset"))(object, what=coefs, transfo=identity, groups,
refSamples, which, pch=".", summaryFun=rowMedians,
plotFun=smoothScatter, main="vs pseudo-median reference chip",
pairs=FALSE, ...)
list(list("MAplot"), list("matrix"))(object, what=identity, transfo=identity,
groups, refSamples, which, pch=".", summaryFun=rowMedians,
plotFun=smoothScatter, main="vs pseudo-median reference chip",
pairs=FALSE, ...)
list(list("MAplot"), list("ExpressionSet"))(object, what=exprs, transfo=identity,
groups, refSamples, which, pch=".", summaryFun=rowMedians,
plotFun=smoothScatter, main="vs pseudo-median reference chip",
pairs=FALSE, ...)
Arguments
Argument | Description |
---|---|
object | FeatureSet , PLMset or ExpressionSet object. |
what | function to be applied on object that will extract the statistics of interest, from which log-ratios and average log-intensities will be computed. |
transfo | function to transform the data prior to plotting. |
groups | factor describing groups of samples that will be combined prior to plotting. If missing, MvA plots are done per sample. |
refSamples | integers (indexing samples) to define which subjects will be used to compute the reference set. If missing, a pseudo-reference chip is estimated using summaryFun . |
which | integer (indexing samples) describing which samples are to be plotted. |
pch | same as pch in plot |
summaryFun | function that operates on a matrix and returns a vector that will be used to summarize data belonging to the same group (or reference) on the computation of grouped-stats. |
plotFun | function to be used for plotting. Usually smoothScatter , plot or points . |
main | string to be used in title. |
pairs | logical flag to determine if a matrix of MvA plots is to be generated |
... | Other arguments to be passed downstream, like plot arguments. |
Details
MAplot will take the following extra arguments:
subset
: indices of elements to be plotted to reduce impact of plotting 100's thousands points (if pairs=FALSE only);span
: seeloess
;family.loess
: seeloess
;addLoess
: logical flag (default TRUE) to add a loess estimate;parParams
: list of params to be passed to par() (if pairs=TRUE only);
Value
Plot
Seealso
Author
Benilton Carvalho - based on Ben Bolstad's original MAplot function.
Examples
if(require(oligoData) & require(pd.hg18.60mer.expr)){
data(nimbleExpressionFS)
nimbleExpressionFS
groups <- factor(rep(c('brain', 'UnivRef'), each=3))
data.frame(sampleNames(nimbleExpressionFS), groups)
MAplot(nimbleExpressionFS, pairs=TRUE, ylim=c(-.5, .5), groups=groups)
}
Sequences_methods()
Probe Sequeces
Description
Accessor to the (PM/MM/background) probe sequences.
Usage
mmSequence(object)
pmSequence(object, ...)
bgSequence(object, ...)
Arguments
Argument | Description |
---|---|
object | FeatureSet , AffySNPPDInfo or DBPDInfo object |
... | additional arguments |
Value
A DNAStringSet containing the PM/MM/background probe sequence associated to the array.
basecontent()
Sequence Base Contents
Description
Function to compute the amounts of each nucleotide in a sequence.
Usage
basecontent(seq)
Arguments
Argument | Description |
---|---|
seq | character vector of length n containg a valid sequence (A/T/C/G) |
Value
matrix
with n
rows and 4 columns with the counts for
each base.
Examples
sequences <- c("ATATATCCCCG", "TTTCCGAGC")
basecontent(sequences)
basicPLM()
Simplified interface to PLM.
Description
Simplified interface to PLM.
Usage
basicPLM(pmMat, pnVec, normalize = TRUE, background = TRUE, transfo =
log2, method = c('plm', 'plmr', 'plmrr', 'plmrc'), verbose = TRUE)
Arguments
Argument | Description |
---|---|
pmMat | Matrix of intensities to be processed. |
pnVec | Probeset names |
normalize | Logical flag: normalize? |
background | Logical flag: background adjustment? |
transfo | function: function to be used for data transformation prior to summarization. |
method | Name of the method to be used for normalization. 'plm' is the usual PLM model; 'plmr' is the (row and column) robust version of PLM; 'plmrr' is the row-robust version of PLM; 'plmrc' is the column-robust version of PLM. |
verbose | Logical flag: verbose. |
Value
A list with the following components:
*
Seealso
rcModelPLM
,
rcModelPLMr
,
rcModelPLMrr
,
rcModelPLMrc
,
basicRMA
Note
Currently, only RMA-bg-correction and quantile normalization are allowed.
Author
Benilton Carvalho
Examples
set.seed(1)
pms <- 2^matrix(rnorm(1000), nc=20)
colnames(pms) <- paste("sample", 1:20, sep="")
pns <- rep(letters[1:10], each=5)
res <- basicPLM(pms, pns, TRUE, TRUE)
res[['Estimates']][1:4, 1:3]
res[['StdErrors']][1:4, 1:3]
res[['Residuals']][1:20, 1:3]
basicRMA()
Simplified interface to RMA.
Description
Simple interface to RMA.
Usage
basicRMA(pmMat, pnVec, normalize = TRUE, background = TRUE, bgversion = 2, destructive = FALSE, verbose = TRUE, ...)
Arguments
Argument | Description |
---|---|
pmMat | Matrix of intensities to be processed. |
pnVec | Probeset names. |
normalize | Logical flag: normalize? |
background | Logical flag: background adjustment? |
bgversion | Version of background correction. |
destructive | Logical flag: use destructive methods? |
verbose | Logical flag: verbose. |
list() | Not currently used. |
Value
Matrix.
Examples
set.seed(1)
pms <- 2^matrix(rnorm(1000), nc=20)
colnames(pms) <- paste("sample", 1:20, sep="")
pns <- rep(letters[1:10], each=5)
res <- basicRMA(pms, pns, TRUE, TRUE)
res[, 1:3]
boxplot()
Boxplot
Description
Boxplot for observed (log-)intensities in a FeatureSet-like object (ExpressionFeatureSet, ExonFeatureSet, SnpFeatureSet, TilingFeatureSet) and ExpressionSet.
Usage
list(list("boxplot"), list("FeatureSet"))(x, which=c("pm", "mm", "bg", "both", "all"), transfo=log2, nsample=10000, list())
list(list("boxplot"), list("ExpressionSet"))(x, which, transfo=identity, nsample=10000, list())
Arguments
Argument | Description |
---|---|
x | a FeatureSet -like object or ExpressionSet object. |
which | character defining what probe types are to be used in the plot. |
transfo | a function to transform the data before plotting. See 'Details'. |
nsample | number of units to sample and build the plot. |
list() | arguments to be passed to the default boxplot method. |
Details
The 'transfo' argument will set the transformation to be used. For raw data, 'transfo=log2' is a common practice. For summarized data (which are often in log2-scale), no transformation is needed (therefore 'transfo=identity').
Seealso
hist
, image
, sample
, set.seed
Note
The boxplot methods for FeatureSet
and Expression
use a
sample (via sample
) of the probes/probesets to produce the
plot. Therefore, the user interested in reproducibility is advised to
use set.seed
.
chromosome()
Accessor for chromosome information
Description
Returns chromosome information.
Usage
%- chromosome(object)pmChr(object)
Arguments
Argument | Description |
---|---|
object | TilingFeatureSet or SnpCallSet object |
Details
chromosome()
returns the chromosomal information for all probes
and pmChr()
subsets the output to the PM probes only (if a
TilingFeatureSet object).
Value
Vector with chromosome information.
colors()
Create set of colors, interpolating through a set of preferred colors.
Description
Create set of colors, interpolating through a set of preferred colors.
Usage
darkColors(n)
seqColors(n)
seqColors2(n)
divColors(n)
Arguments
Argument | Description |
---|---|
n | integer determining number of colors to be generated |
Details
darkColors
is based on the Dark2 palette in RColorBrewer, therefore
useful to describe qualitative features of the data.
seqColors
is based on Blues and generates a gradient of blues, therefore
useful to describe quantitative features of the data. seqColors2
behaves similarly, but it is based on OrRd (white-orange-red).
divColors
is based on the RdBu pallete in RColorBrewer, therefore
useful to describe quantitative features ranging on two extremes.
Examples
x <- 1:10
y <- 1:10
cols1 <- darkColors(10)
cols2 <- seqColors(10)
cols3 <- divColors(10)
cols4 <- seqColors2(10)
plot(x, y, col=cols1, xlim=c(1, 13), pch=19, cex=3)
points(x+1, y, col=cols2, pch=19, cex=3)
points(x+2, y, col=cols3, pch=19, cex=3)
points(x+3, y, col=cols4, pch=19, cex=3)
abline(0, 1, lty=2)
abline(-1, 1, lty=2)
abline(-2, 1, lty=2)
abline(-3, 1, lty=2)
coordinates()
Accessors for physical array coordinates.
Description
Accessors for physical array coordinates.
Usage
getX(object, type)
getY(object, type)
Arguments
Argument | Description |
---|---|
object | FeatureSet object |
type | 'character' defining the type of the probes to be queried. Valid options are 'pm', 'mm', 'bg' |
Value
A vector with the requested coordinates.
Examples
x <- read.celfiles(list.celfiles())
theXpm <- getX(x, "pm")
theYpm <- getY(x, "pm")
crlmm()
Genotype Calls
Description
Performs genotype calls via CRLMM (Corrected Robust Linear Model with Maximum-likelihood based distances).
Usage
crlmm(filenames, outdir, batch_size=40000, balance=1.5,
minLLRforCalls=c(5, 1, 5), recalibrate=TRUE,
verbose=TRUE, pkgname, reference=TRUE)
justCRLMM(filenames, batch_size = 40000, minLLRforCalls = c(5, 1, 5),
recalibrate = TRUE, balance = 1.5, phenoData = NULL, verbose = TRUE,
pkgname = NULL, tmpdir=tempdir())
Arguments
Argument | Description |
---|---|
filenames | character vector with the filenames. |
outdir | directory where the output (and some tmp files) files will be saved. |
batch_size | integer defining how many SNPs should be processed at a time. |
recalibrate | Logical - should recalibration be performed? |
balance | Control parameter to balance homozygotes and heterozygotes calls. |
minLLRforCalls | Minimum thresholds for genotype calls. |
verbose | Logical. |
phenoData | phenoData object or NULL |
pkgname | alt. pdInfo package to be used |
reference | logical, defaulting to TRUE ... |
tmpdir | Directory where temporary files are going to be stored at. |
Value
SnpCallSetPlus
object.
fitProbeLevelModel()
Tool to fit Probe Level Models.
Description
Fits robust Probe Level linear Models to all the (meta)probesets
in an FeatureSet
. This is carried out
on a (meta)probeset by (meta)probeset basis.
Usage
fitProbeLevelModel(object, background=TRUE, normalize=TRUE, target="core", method="plm", verbose=TRUE, S4=TRUE, ...)
Arguments
Argument | Description |
---|---|
object | FeatureSet object. |
background | Do background correction? |
normalize | Do normalization? |
target | character vector describing the summarization target. Valid values are: 'probeset', 'core' (Gene/Exon), 'full' (Exon), 'extended' (Exon). |
method | summarization method to be used. |
verbose | verbosity flag. |
S4 | return final value as an S4 object ( oligoPLM ) if TRUE . If FALSE , final value is returned as a list . |
... | subset to be passed down to getProbeInfo for subsetting. See subset for details. |
Value
fitProbeLevelModel
returns an oligoPLM
object, if S4=TRUE
; otherwise, it will return a list.
Seealso
rma
, summarizationMethods
, subset
Note
This is the initial port of fitPLM
to oligo. Some features
found on the original work by Ben Bolstad (in the affyPLM package) may
not be yet available. If you found one of this missing
characteristics, please contact Benilton Carvalho.
Author
This is a simplified port from Ben Bolstad's work implemented in the affyPLM package. Problems with the implementation in oligo should be reported to Benilton Carvalho.
References
Bolstad, BM (2004) list("Low Level Analysis of High-density ", " Oligonucleotide Array Data: Background, Normalization and ", " Summarization") . PhD Dissertation. University of California, Berkeley.
Examples
if (require(oligoData)){
data(nimbleExpressionFS)
fit <- fitProbeLevelModel(nimbleExpressionFS)
image(fit)
NUSE(fit)
RLE(fit)
}
getAffinitySplineCoefficients()
Estimate affinity coefficients.
Description
Estimate affinity coefficients using sequence information and splines.
Usage
getAffinitySplineCoefficients(intensities, sequences)
Arguments
Argument | Description |
---|---|
intensities | Intensity matrix |
sequences | Probe sequences |
Value
Matrix with estimated coefficients.
Seealso
getBaseProfile
getBaseProfile()
Compute and plot nucleotide profile.
Description
Computes and, optionally, lots nucleotide profile, describing the sequence effect on intensities.
Usage
getBaseProfile(coefs, probeLength = 25, plot = FALSE, ...)
Arguments
Argument | Description |
---|---|
coefs | affinity spline coefficients. |
probeLength | length of probes |
plot | logical. Plots profile? |
list() | arguments to be passed to matplot. |
Value
Invisibly returns a matrix with estimated effects.
getContainer()
Get container information for NimbleGen Tiling Arrays.
Description
Get container information for NimbleGen Tiling Arrays. This is useful for better identification of control probes.
Usage
getContainer(object, probeType)
Arguments
Argument | Description |
---|---|
object | A TilingFeatureSet or TilingFeatureSet object. |
probeType | String describing which probes to query ('pm', 'bg') |
Value
'character' vector with container information.
getCrlmmSummaries()
Function to get CRLMM summaries saved to disk
Description
This will read the summaries written to disk and return them to the
user as a SnpCallSetPlus
or SnpCnvCallSetPlus
object.
Usage
getCrlmmSummaries(tmpdir)
Arguments
Argument | Description |
---|---|
tmpdir | directory where CRLMM saved the results to. |
Value
If the data were from SNP 5.0 or 6.0 arrays, the function will return
a SnpCnvCallSetPlus
object. It will return a SnpCallSetPlus
object, otherwise.
getNetAffx()
NetAffx Biological Annotations
Description
Gets NetAffx Biological Annotations saved in the annotation package (Exon and Gene ST Affymetrix arrays).
Usage
getNetAffx(object, type = "probeset")
Arguments
Argument | Description |
---|---|
object | 'ExpressionSet' object (eg., result of rma()) |
type | Either 'probeset' or 'transcript', depending on what type of summaries were obtained. |
Details
This retrieves NetAffx annotation saved in the (pd) annotation package
- annotation(object). It is only available for Exon ST and Gene ST arrays.
The 'type' argument should match the summarization target used to generate 'object'. The 'rma' method allows for two targets: 'probeset' (target='probeset') and 'transcript' (target='core', target='full', target='extended').
Value
'AnnotatedDataFrame' that can be used as featureData(object)
Author
Benilton Carvalho
getNgsColorsInfo()
Helper function to extract color information for filenames on NimbleGen arrays.
Description
This function will (try to) extract the color information for
NimbleGen arrays. This is useful when using read.xysfiles2
to
parse XYS files for Tiling applications.
Usage
getNgsColorsInfo(path = ".", pattern1 = "_532", pattern2 = "_635", ...)
Arguments
Argument | Description |
---|---|
path | path where to look for files |
pattern1 | pattern to match files supposed to go to the first channel |
pattern2 | pattern to match files supposed to go to the second channel |
list() | extra arguments for list.xysfiles |
Details
Many NimbleGen samples are identified following the pattern sampleID_532.XYS / sampleID_635.XYS.
The function suggests sample names if all the filenames follow the standard above.
Value
A data.frame with, at least, two columns: 'channel1' and 'channel2'. A third column, 'sampleNames', is returned if the filenames follow the sampleID_532.XYS / sampleID_635.XYS standard.
Author
Benilton Carvalho bcarvalh@jhsph.edu
getPlatformDesign()
Retrieve Platform Design object
Description
Retrieve platform design object.
Usage
getPlatformDesign(object)
getPD(object)
Arguments
Argument | Description |
---|---|
object | FeatureSet object |
Details
Retrieve platform design object.
Value
platformDesign
or PDInfo
object.
getProbeInfo()
Probe information selector.
Description
A tool to simplify the selection of probe information, so user does not need to use the SQL approaches.
Usage
getProbeInfo(object, field, probeType = "pm", target = "core", sortBy = c("fid", "man_fsetid", "none"), ...)
Arguments
Argument | Description |
---|---|
object | FeatureSet object. |
field | character string with names of field(s) of interest to be obtained from database. |
probeType | character string: 'pm' or 'mm' |
target | Used only for Exon or Gene ST arrays: 'core', 'full', 'extended', 'probeset'. |
sortBy | Field to be used for sorting. |
... | Arguments to be passed to subset |
Value
A data.frame
with the probe level information.
Note
The code allows for querying info on MM probes, however it has been used mostly on PM probes.
Author
Benilton Carvalho
Examples
if (require(oligoData)){
data(affyGeneFS)
availProbeInfo(affyGeneFS)
probeInfo <- getProbeInfo(affyGeneFS, c('fid', 'x', 'y', 'chrom'))
head(probeInfo)
## Selecting antigenomic background probes
agenGene <- getProbeInfo(affyGeneFS, field=c('fid', 'fsetid', 'type'), target='probeset', subset= type == 'control->bgp->antigenomic')
head(agenGene)
}
hist()
Density estimate
Description
Plot the density estimates for each sample
Usage
list(list("hist"), list("FeatureSet"))(x, transfo=log2, which=c("pm", "mm", "bg", "both", "all"),
nsample=10000, ...)
list(list("hist"), list("ExpressionSet"))(x, transfo=identity, nsample=10000, ...)
Arguments
Argument | Description |
---|---|
x | FeatureSet or ExpressionSet object |
transfo | a function to transform the data before plotting. See 'Details'. |
nsample | number of units to sample and build the plot. |
which | set of probes to be plotted ("pm", "mm", "bg", "both", "all"). |
list() | arguments to be passed to matplot |
Details
The 'transfo' argument will set the transformation to be used. For raw data, 'transfo=log2' is a common practice. For summarized data (which are often in log2-scale), no transformation is needed (therefore 'transfo=identity').
Note
The hist methods for FeatureSet
and Expression
use a
sample (via sample
) of the probes/probesets to produce the
plot (unless nsample > nrow(x)). Therefore, the user interested in reproducibility is advised to
use set.seed
.
image()
Display a pseudo-image of a microarray chip
Description
Produces a pseudo-image ( graphics::image
) for each sample.
Usage
list(list("image"), list("FeatureSet"))(x, which, transfo=log2, ...)
list(list("image"), list("PLMset"))(x, which=0,
type=c("weights","resids", "pos.resids","neg.resids","sign.resids"),
use.log=TRUE, add.legend=FALSE, standardize=FALSE,
col=NULL, main, ...)
Arguments
Argument | Description |
---|---|
x | FeatureSet object |
which | integer indices of samples to be plotted (optional). |
transfo | function to be applied to the data prior to plotting. |
type | Type of statistics to be used. |
use.log | Use log. |
add.legend | Add legend. |
standardize | Standardize residuals. |
col | Colors to be used. |
main | Main title. |
list() | parameters to be passed to image |
Examples
if(require(oligoData) & require(pd.hg18.60mer.expr)){
data(nimbleExpressionFS)
par(mfrow=c(1, 2))
image(nimbleExpressionFS, which=4)
## fit <- fitPLM(nimbleExpressionFS)
## image(fit, which=4)
plot(1) ## while fixing fitPLM TODO
}
justSNPRMA()
Summarization of SNP data
Description
This function implements the SNPRMA method for summarization of SNP data. It works directly with the CEL files, saving memory.
Usage
justSNPRMA(filenames, verbose = TRUE, phenoData = NULL, normalizeToHapmap = TRUE)
Arguments
Argument | Description |
---|---|
filenames | character vector with the filenames. |
verbose | logical flag for verbosity. |
phenoData | a phenoData object or NULL |
normalizeToHapmap | Normalize to Hapmap? Should always be TRUE, but it's kept here for future use. |
Value
SnpQSet
or a SnpCnvQSet
, depending on the array type.
Examples
## snprmaResults <- justSNPRMA(list.celfiles())
listxysfiles()
List XYS files
Description
Lists the XYS files.
Usage
list.xysfiles(...)
Arguments
Argument | Description |
---|---|
list() | parameters to be passed to list.files |
Details
The functions interface list.files
and the user is asked
to check that function for further details.
Value
Character vector with the filenames.
Seealso
Examples
list.xysfiles()
oligoDefunct()
Defunct Functions in Package 'oligo'
Description
The functions or variables listed here are no longer part of 'oligo'
Usage
fitPLM(...)
coefs(...)
resids(...)
Arguments
Argument | Description |
---|---|
... | Arguments. |
Details
fitPLM
was replaced by fitProbeLevelModel
, allowing faster execution and providing more specific models. fitPLM
was based in the code written by Ben Bolstad in the affyPLM
package. However, all the model-fitting functions are now in the package preprocessCore
, on which fitProbeLevelModel
depends.
coefs
and resids
, like fitPLM
, were inherited from the affyPLM
package. They were replaced respectively by coef
and residuals
, because this is how these statistics are called everywhere else in R
.
oligoPLM_class()
Class "oligoPLM"
Description
A class to represent Probe Level Models.
Seealso
Author
This is a port from Ben Bolstad's work implemented in the affyPLM package. Problems with the implementation in oligo should be reported to the package's maintainer.
References
Bolstad, BM (2004) list("Low Level Analysis of High-density ", " Oligonucleotide Array Data: Background, Normalization and ", " Summarization") . PhD Dissertation. University of California, Berkeley.
Examples
## TODO: review code and fix broken
if (require(oligoData)){
data(nimbleExpressionFS)
fit <- fitProbeLevelModel(nimbleExpressionFS)
image(fit)
NUSE(fit)
RLE(fit)
}
oligo_package()
The oligo package: a tool for low-level analysis of oligonucleotide arrays
Description
The oligo package provides tools to preprocess different oligonucleotide arrays types: expression, tiling, SNP and exon chips. The supported manufacturers are Affymetrix and NimbleGen.
It offers support to large datasets (when the bigmemory is loaded) and can execute preprocessing tasks in parallel (if, in addition to bigmemory , the snow package is also loaded).
Details
The package will read the raw intensity files (CEL for Affymetrix; XYS for NimbleGen) and allow the user to perform analyses starting at the feature-level.
Reading in the intensity files require the existence of data packages that contain the chip specific information (X/Y coordinates; feature types; sequence). These data packages packages are built using the pdInfoBuilder package.
For Affymetrix SNP arrays, users are asked to download the already built annotation packages from BioConductor. This is because these packages contain metadata that are not automatically created. The following annotation packages are available:
50K Xba - pd.mapping50kxba.240 50K Hind - pd.mapping50khind.240 250K Sty - pd.mapping250k.sty 250K Nsp - pd.mapping250k.nsp GenomeWideSnp 5 (SNP 5.0) - pd.genomewidesnp.5 GenomeWideSnp 6 (SNP 6.0) - pd.genomewidesnp.6
For users interested in genotype calls for SNP 5.0 and 6.0 arrays, we strongly recommend the use use the crlmm package, which implements a more efficient version of CRLMM.
Author
Benilton Carvalho - carvalho@bclab.org
References
Carvalho, B.; Bengtsson, H.; Speed, T. P. & Irizarry, R. A. Exploration, Normalization, and Genotype Calls of High Density Oligonucleotide SNP Array Data. Biostatistics, 2006.
paCalls()
Methods for P/A Calls
Description
Methods for Present/Absent Calls are meant to provide means of assessing whether or not each of the (PM) intensities are compatible with observations generated by background probes.
Usage
paCalls(object, method, ..., verbose=TRUE)
list(list("paCalls"), list("ExonFeatureSet"))(object, method, verbose = TRUE)
list(list("paCalls"), list("GeneFeatureSet"))(object, method, verbose = TRUE)
list(list("paCalls"), list("ExpressionFeatureSet"))(object, method, ..., verbose = TRUE)
Arguments
Argument | Description |
---|---|
object | Exon/Gene/Expression-FeatureSet object. |
method | String defining what method to use. See 'Details'. |
... | Additional arguments passed to MAS5. See 'Details' |
verbose | Logical flag for verbosity. |
Details
For Whole Transcript arrays (Exon/Gene) the valid options for
method
are 'DABG' (p-values for each probe) and 'PSDABG'
(p-values for each probeset). For Expression arrays, the only option
currently available for method
is 'MAS5'.
ABOUT MAS5 CALLS:
The additional arguments that can be passed to MAS5 are:
alpha1
: a significance threshold in (0, alpha2);alpha2
: a significance threshold in (alpha1, 0.5);tau
: a small positive constant;ignore.saturated
: if TRUE, do the saturation correction described in the paper, with a saturation level of 46000;
This function performs the hypothesis test:
H0: median(Ri) = tau, corresponding to absence of transcript H1: median(Ri) > tau, corresponding to presence of transcript
where Ri = (PMi - MMi) / (PMi + MMi) for each i a probe-pair in the probe-set represented by data.
The p-value that is returned estimates the usual quantity:
| Pr(observing a more "present looking" probe-set than data | data is absent)|
So that small p-values imply presence while large ones imply absence of transcript. The detection call is computed by thresholding the p-value as in:
call "P" if p-value < alpha1 call "M" if alpha1 <= p-value < alpha2 call "A" if alpha2 <= p-value
Value
A matrix (of dimension dim(PM) if method="DABG" or "MAS5"; of dimension length(unique(probeNames(object))) x ncol(object) if method="PSDABG") with p-values for P/A Calls.
Author
Benilton Carvalho
References
Clark et al. Discovery of tissue-specific exons using comprehensive human exon microarrays. Genome Biol (2007) vol. 8 (4) pp. R64
Liu, W. M. and Mei, R. and Di, X. and Ryder, T. B. and Hubbell, E. and Dee, S. and Webster, T. A. and Harrington, C. A. and Ho, M. H. and Baid, J. and Smeekens, S. P. (2002) Analysis of high density expression microarrays with signed-rank call algorithms, Bioinformatics, 18(12), pp. 1593--1599.
Liu, W. and Mei, R. and Bartell, D. M. and Di, X. and Webster, T. A. and Ryder, T. (2001) Rank-based algorithms for analysis of microarrays, Proceedings of SPIE, Microarrays: Optical Technologies and Informatics, 4266.
Affymetrix (2002) Statistical Algorithms Description Document, Affymetrix Inc., Santa Clara, CA, whitepaper. http://www.affymetrix.com/support/technical/whitepapers/sadd_whitepaper.pdf
Examples
if (require(oligoData) & require(pd.huex.1.0.st.v2)){
data(affyExonFS)
## Get only 2 samples for example
dabgP = paCalls(affyExonFS[, 1:2])
dabgPS = paCalls(affyExonFS[, 1:2], "PSDABG")
head(dabgP) ## for probe
head(dabgPS) ## for probeset
}
plotM_methods()
Methods for Log-Ratio plotting
Description
The plotM
methods are meant to plot log-ratios for different
classes of data.
pmAllele()
Access the allele information for PM probes.
Description
Accessor to the allelic information for PM probes.
Usage
pmAllele(object)
Arguments
Argument | Description |
---|---|
object | SnpFeatureSet or PDInfo object. |
pmFragmentLength()
Access the fragment length for PM probes.
Description
Accessor to the fragment length for PM probes.
Usage
pmFragmentLength(object, enzyme, type=c('snp', 'cn'))
Arguments
Argument | Description |
---|---|
object | PDInfo or SnpFeatureSet object. |
enzyme | Enzyme to be used for query. If missing, all enzymes are used. |
type | Type of probes to be used: 'snp' for SNP probes; 'cn' for Copy Number probes. |
Value
A list of length equal to the number of enzymes used for digestion. Each element of the list is a data.frame containing:
row
: the row used to link to the PM matrix;length
: expected fragment length.
Note
There is not a 1:1 relationship between probes and expected fragment
length. For one enzyme, a given probe may be associated to multiple
fragment lengths. Therefore, the number of rows in the data.frame may
not match the number of PM probes and the row
column should be
used to match the fragment length with the PM matrix.
pmPosition()
Accessor to position information
Description
pmPosition
will return the genomic position for the
(PM) probes.
Usage
%position(object)pmPosition(object)
pmOffset(object)
Arguments
Argument | Description |
---|---|
object | AffySNPPDInfo , TilingFeatureSet or SnpCallSet object |
Details
pmPosition
will return genomic position for PM probes on a
tiling array.
pmOffset
will return the offset information for PM probes on
SNP arrays.
pmStrand()
Accessor to the strand information
Description
Returns the strand information for PM probes (0 - sense / 1 - antisense).
Usage
pmStrand(object)
Arguments
Argument | Description |
---|---|
object | AffySNPPDInfo or TilingFeatureSet object |
preprocessTools()
Tools for microarray preprocessing.
Description
These are tools to preprocess microarray data. They include background correction, normalization and summarization methods.
Usage
backgroundCorrectionMethods()
normalizationMethods()
summarizationMethods()
backgroundCorrect(object, method=backgroundCorrectionMethods(), copy=TRUE, extra, subset=NULL, target='core', verbose=TRUE)
summarize(object, probes=rownames(object), method="medianpolish", verbose=TRUE, ...)
list(list("normalize"), list("FeatureSet"))(object, method=normalizationMethods(), copy=TRUE, subset=NULL,target='core', verbose=TRUE, ...)
list(list("normalize"), list("matrix"))(object, method=normalizationMethods(), copy=TRUE, verbose=TRUE, ...)
list(list("normalize"), list("ff_matrix"))(object, method=normalizationMethods(), copy=TRUE, verbose=TRUE, ...)
normalizeToTarget(object, targetDist, method="quantile", copy=TRUE, verbose=TRUE)
Arguments
Argument | Description |
---|---|
object | Object containing probe intensities to be preprocessed. |
method | String determining which method to use at that preprocessing step. |
targetDist | Vector with the target distribution |
probes | Character vector that identifies the name of the probes represented by the rows of object . |
copy | Logical flag determining if data must be copied before processing (TRUE), or if data can be overwritten (FALSE). |
subset | Not yet implemented. |
target | One of the following values: 'core', 'full', 'extended', 'probeset'. Used only with Gene ST and Exon ST designs. |
extra | Extra arguments to be passed to other methods. |
verbose | Logical flag for verbosity. |
list() | Arguments to be passed to methods. |
Details
Number of rows of object
must match the length of
probes
.
Value
backgroundCorrectionMethods
and normalizationMethods
will return a character vector with the methods implemented currently.
backgroundCorrect
, normalize
and
normalizeToTarget
will return a matrix with same dimensions as
the input matrix. If they are applied to a FeatureSet object, the PM
matrix will be used as input.
The summarize
method will return a matrix with
length(unique(probes))
rows and ncol(object)
columns.
Examples
ns <- 100
nps <- 1000
np <- 10
intensities <- matrix(rnorm(ns*nps*np, 8000, 400), nc=ns)
ids <- rep(as.character(1:nps), each=np)
bgCorrected <- backgroundCorrect(intensities)
normalized <- normalize(bgCorrected)
summarizationMethods()
expression <- summarize(normalized, probes=ids)
intensities[1:20, 1:3]
expression[1:20, 1:3]
target <- rnorm(np*nps)
normalizedToTarget <- normalizeToTarget(intensities, target)
if (require(oligoData) & require(pd.hg18.60mer.expr)){
## Example of normalization with real data
data(nimbleExpressionFS)
boxplot(nimbleExpressionFS, main='Original')
for (mtd in normalizationMethods()){
message('Normalizing with ', mtd)
res <- normalize(nimbleExpressionFS, method=mtd, verbose=FALSE)
boxplot(res, main=mtd)
}
}
probeNames()
Accessor to feature names
Description
Accessors to featureset names.
Usage
probeNames(object, subset = NULL, ...)
probesetNames(object, ...)
Arguments
Argument | Description |
---|---|
object | FeatureSet or DBPDInfo |
subset | not implemented yet. |
list() | Arguments (like 'target') passed to downstream methods. |
Value
probeNames
returns a string with the probeset names for each probe
on the array. probesetNames
, on the other hand, returns the
unique probeset names.
readSummaries()
Read summaries generated by crlmm
Description
This function read the different summaries generated by crlmm.
Usage
readSummaries(type, tmpdir)
Arguments
Argument | Description |
---|---|
type | type of summary of character class: 'alleleA', 'alleleB', 'alleleA-sense', 'alleleA-antisense', 'alleleB-sense', 'alleleB-antisense', 'calls', 'llr', 'conf'. |
tmpdir | directory containing the output saved by crlmm |
Details
On the 50K and 250K arrays, given a SNP, there are probes on both strands (sense and antisense). For this reason, the options 'alleleA-sense', 'alleleA-antisense', 'alleleB-sense' and 'alleleB-antisense' should be used only with such arrays (XBA, HIND, NSP or STY).
On the SNP 5.0 and SNP 6.0 platforms, this distinction does not exist in terms of algorithm (note that the actual strand could be queried from the annotation package). For these arrays, options 'alleleA', 'alleleB' are the ones to be used.
The options calls
, llr
and conf
will return,
respectivelly, the CRLMM calls, log-likelihood ratios (for devel
purpose only) and CRLMM confidence calls matrices.
Value
Matrix with values of summaries.
readcelfiles()
Parser to CEL files
Description
Reads CEL files.
Usage
read.celfiles(..., filenames, pkgname, phenoData, featureData,
experimentData, protocolData, notes, verbose=TRUE, sampleNames,
rm.mask=FALSE, rm.outliers=FALSE, rm.extra=FALSE, checkType=TRUE)
read.celfiles2(channel1, channel2, pkgname, phenoData, featureData,
experimentData, protocolData, notes, verbose=TRUE, sampleNames,
rm.mask=FALSE, rm.outliers=FALSE, rm.extra=FALSE, checkType=TRUE)
Arguments
Argument | Description |
---|---|
... | names of files to be read. |
filenames | a character vector with the CEL filenames. |
channel1 | a character vector with the CEL filenames for the first 'channel' on a Tiling application |
channel2 | a character vector with the CEL filenames for the second 'channel' on a Tiling application |
pkgname | alternative data package to be loaded. |
phenoData | phenoData |
featureData | featureData |
experimentData | experimentData |
protocolData | protocolData |
notes | notes |
verbose | logical |
sampleNames | character vector with sample names (usually better descriptors than the filenames) |
rm.mask | logical . Read masked? |
rm.outliers | logical . Remove outliers? |
rm.extra | logical . Remove extra? |
checkType | logical . Check type of each file? This can be time consuming. |
Details
When using 'affyio' to read in CEL files, the user can read compressed CEL files (CEL.gz). Additionally, 'affyio' is much faster than 'affxparser'.
The function guesses which annotation package to use from the header
of the CEL file. The user can also provide the name of the annotaion
package to be used (via the pkgname
argument). If the
annotation package cannot be loaded, the function returns an
error. If the annotation package is not available from BioConductor,
one can use the pdInfoBuilder
package to build one.
Value
*
Seealso
Examples
if(require(pd.mapping50k.xba240) & require(hapmap100kxba)){
celPath <- system.file("celFiles", package="hapmap100kxba")
celFiles <- list.celfiles(celPath, full.name=TRUE)
affySnpFeatureSet <- read.celfiles(celFiles)
}
readxysfiles()
Parser to XYS files
Description
NimbleGen provides XYS files which are read by this function.
Usage
read.xysfiles(..., filenames, pkgname, phenoData, featureData,
experimentData, protocolData, notes, verbose=TRUE, sampleNames,
checkType=TRUE)
read.xysfiles2(channel1, channel2, pkgname, phenoData, featureData,
experimentData, protocolData, notes, verbose=TRUE, sampleNames,
checkType=TRUE)
Arguments
Argument | Description |
---|---|
... | file names |
filenames | character vector with filenames. |
channel1 | a character vector with the XYS filenames for the first 'channel' on a Tiling application |
channel2 | a character vector with the XYS filenames for the second 'channel' on a Tiling application |
pkgname | character vector with alternative PD Info package name |
phenoData | phenoData |
featureData | featureData |
experimentData | experimentData |
protocolData | protocolData |
notes | notes |
verbose | verbose |
sampleNames | character vector with sample names (usually better descriptors than the filenames) |
checkType | logical . Check type of each file? This can be time consuming. |
Details
The function will read the XYS files provided by NimbleGen Systems and return an object of class FeatureSet.
The function guesses which annotation package to use from the header
of the XYS file. The user can also provide the name of the annotaion
package to be used (via the pkgname
argument). If the
annotation package cannot be loaded, the function returns an
error. If the annotation package is not available from BioConductor,
one can use the pdInfoBuilder
package to build one.
Value
*
Seealso
Examples
if (require(maqcExpression4plex) & require(pd.hg18.60mer.expr)){
xysPath <- system.file("extdata", package="maqcExpression4plex")
xysFiles <- list.xysfiles(xysPath, full.name=TRUE)
ngsExpressionFeatureSet <- read.xysfiles(xysFiles)
}
rma_methods()
RMA - Robust Multichip Average algorithm
Description
Robust Multichip Average preprocessing methodology. This strategy allows background subtraction, quantile normalization and summarization (via median-polish).
Usage
list(list("rma"), list("ExonFeatureSet"))(object, background=TRUE, normalize=TRUE, subset=NULL, target="core")
list(list("rma"), list("HTAFeatureSet"))(object, background=TRUE, normalize=TRUE, subset=NULL, target="core")
list(list("rma"), list("ExpressionFeatureSet"))(object, background=TRUE, normalize=TRUE, subset=NULL)
list(list("rma"), list("GeneFeatureSet"))(object, background=TRUE, normalize=TRUE, subset=NULL, target="core")
list(list("rma"), list("SnpCnvFeatureSet"))(object, background=TRUE, normalize=TRUE, subset=NULL)
Arguments
Argument | Description |
---|---|
object | Exon/HTA/Expression/Gene/SnpCnv-FeatureSet object. |
background | Logical - perform RMA background correction? |
normalize | Logical - perform quantile normalization? |
subset | To be implemented. |
target | Level of summarization (only for Exon/Gene arrays) |
Seealso
References
Rafael. A. Irizarry, Benjamin M. Bolstad, Francois Collin, Leslie M. Cope, Bridget Hobbs and Terence P. Speed (2003), Summaries of Affymetrix GeneChip probe level data Nucleic Acids Research 31(4):e15
Bolstad, B.M., Irizarry R. A., Astrand M., and Speed, T.P. (2003), A Comparison of Normalization Methods for High Density O ligonucleotide Array Data Based on Bias and Variance. Bioinformatics 19(2):185-193
Irizarry, RA, Hobbs, B, Collin, F, Beazer-Barclay, YD, Antonellis, KJ, Scherf, U, Speed, TP (2003) Exploration, Normalizati on, and Summaries of High Density Oligonucleotide Array Probe Level Data. Biostatistics. Vol. 4, Number 2: 249-264
Examples
if (require(maqcExpression4plex) & require(pd.hg18.60mer.expr)){
xysPath <- system.file("extdata", package="maqcExpression4plex")
xysFiles <- list.xysfiles(xysPath, full.name=TRUE)
ngsExpressionFeatureSet <- read.xysfiles(xysFiles)
summarized <- rma(ngsExpressionFeatureSet)
show(summarized)
}
runDate()
Date of scan
Description
Retrieves date information in CEL/XYS files.
Usage
runDate(object)
Arguments
Argument | Description |
---|---|
object | 'FeatureSet' object. |
sequenceDesignMatrix()
Create design matrix for sequences
Description
Creates design matrix for sequences.
Usage
sequenceDesignMatrix(seqs)
Arguments
Argument | Description |
---|---|
seqs | character vector of 25-mers. |
Details
This assumes all sequences are 25bp long.
The design matrix is often used when the objecive is to adjust intensities by sequence.
Value
Matrix with length(seqs) rows and 75 columns.
Examples
genSequence <- function(x)
paste(sample(c("A", "T", "C", "G"), 25, rep=TRUE), collapse="", sep="")
seqs <- sapply(1:10, genSequence)
X <- sequenceDesignMatrix(seqs)
Y <- rnorm(10, mean=12, sd=2)
Ydemean <- Y-mean(Y)
X[1:10, 1:3]
fit <- lm(Ydemean~X)
coef(fit)
snprma()
Preprocessing SNP Arrays
Description
This function preprocess SNP arrays.
Usage
snprma(object, verbose = TRUE, normalizeToHapmap = TRUE)
Arguments
Argument | Description |
---|---|
object | SnpFeatureSet object |
verbose | Verbosity flag. logical |
normalizeToHapmap | internal |
Value
A SnpQSet
object.